DOCUMENTOS DE TRABAJO
Serie Economía

Nº 333
STRATEGY-PROOF AND GROUP STRATEGY-PROOF STABLE MECHANISMS: AN EQUIVALENCE
ANTONIO ROMERO-MEDINA Y MATTEO TRIOSSI
Strategy-proof and Group Strategy-proof
Stable Mechanisms: An Equivalence*

Antonio Romero-Medina† Matteo Triossi‡

July 13, 2018

Abstract

We prove that group strategy-proofness and strategy-proofness are equivalent requirements on stable mechanisms in priority-based resource allocation problems with multi-unit demand. The

*We thank Fuhito Kojima for his insightful comments. Both authors acknowledge financial support from Ministerio Economía y Competitividad (Spain) under projects ECO2014_57442_P and ECO2017_87769_P, from Fondecyt under project No. 1151230 and from the Institute for Research in Market Imperfections and Public Policy, ICM IS130002, Ministerio de Economía, Fomento y Turismo. Romero-Medina acknowledges the financial support from Ministerio Economía y Competitividad (Spain) under projects MECD PR15/00306 and MDM 2014-0431, and Comunidad de Madrid, MadEco-CM (2015/HUM-3444).

†Departamento de Economía, Universidad Carlos III de Madrid, Calle Madrid 126, 28903 Getafe, Madrid, Spain. E-mail: aromero@eco.uc3m.es.

‡Corresponding Author. Center of Applied Economics, Departament of Industrial Engineerin, University of Chile, Beaucelleff 851, 8370456, Santiago, Chile. E-mail: mtriossi@dii.uchile.
result extends to the model with contracts.
JEL Classification Numbers: C78; D78.
Keywords: Multi-unit demand; Stability; Strategy-proofness, Group Strategy-proofness.
1 Introduction

We study the compatibility of efficiency, stability and group strategy-proofness in priority-based resource allocation problems with multi-unit demand, for example situations when students with time constraints want to sign up for multiple courses with capacity constraints. However, in this problem efficiency, stability and group strategy-proofness are not compatible when we consider the general domain of priorities (see Roth and Sotomayor, 1990).

Kojima (2013) shows that the existence of a stable and strategy-proof mechanism is equivalent to the existence of an efficient and stable mechanism. In particular, Kojima (2013) characterizes those priority structures that allow stable and strategy-proof mechanisms as the ones that satisfy a condition called essential homogeneity. If essential homogeneity is satisfied, courses can have different priorities only on top ranked students. If some courses have few seats available, essential homogeneity is extremely requiring. For example, if one of the courses has only one seat available, essential homogeneity amounts to all courses having the same priorities. On the other hand, if each course has a large supply of seats, essential homogeneity is more permissive.

However, strategy-proofness does not prevent manipulation by coalitions of agents. This is a relevant concern when the coalitions that can be formed are small and easy to coordinate.\footnote{Consider, for example, the problem of assigning landing slots (see Schummer and Vohra, 2013 and Schummer and Abizada, 2017).} Group strategy-proofness prevents this danger and guarantees efficiency, since it prevents profitable deviations from the grand coalition. Thus, we explore the possibility of designing mechanisms...
that are stable and group strategy-proof.

We exploit the characterization of essential homogeneity in terms of a serial dictatorship provided by Kojima (2013) to prove that group strategy-proofness and strategy-proofness are equivalent requirements when imposed on stable mechanisms (see also Barberá et al., 2016). Thus, the essential homogeneity of a priority system characterizes both requirements and restricts our attention to serial dictatorships as implementing mechanisms. This equivalence is a surprising, albeit simple, result, since group strategy-proofness is more requiring than strategy-proofness. In particular, in the school assignment model (which is a many-to-one resource allocation model), the student-optimal stable mechanism always provides a stable and strategy-proof assignment (see Roth and Sotomayor, 1990). However, efficiency and group strategy-proofness require priorities to satisfy an acyclicity condition (see Ergin, 2002), which is similar but less restrictive than essential homogeneity. In the school assignment problem, Ergin (2002) proves that the existence of a stable and group strategy-proof mechanism is equivalent to the existence of a stable and efficient mechanism. Our characterization extends Ergin’s results to the course assignment problem and contributes to explaining the restrictiveness of imposing strategy-proofness on stable mechanisms.\footnote{Romero-Medina and Triossi (2018) study a similar problem in a two-sided market and prove that a stronger acyclicity condition is necessary and sufficient for the existence of a mechanism that is stable and strategy-proof for the agents on both sides of the market.}

We also observe that our result extends to the multi-unit assignment model with contracts, thus completing the results by Pakzad-Hursos (2014).

Finally, we investigate whether restricting the demand of the students leads
to results that are more permissive. We prove that it is not the case: even if a student can apply to at most two courses, essential homogeneity is still a necessary and sufficient condition for the existence of a stable and strategy-proof mechanism.

The paper is organized as follows. Section 2 presents the model. Section 3 presents the results. Section 4 concludes. The Proofs are in the Appendix.

2 The Model

There are a finite set of courses C and a finite set of students S, with $S \cap C = \emptyset$. The model is characterized by a priority structure, which is the order by which students are given priority over courses. Formally, each course $c \in C$ has a priority, $\succ c$, which is a strict, complete and transitive binary relation over S. Each $c \in C$ has a supply of q_c, which is the maximum number of students who can enroll in c. A priority structure is a pair (\succ, q_C), where $\succ = (\succ c)_{c \in C}$ and $q_C = (q_c)_{c \in C}$.

Each student $s \in S$ has a strict preference relation P_s over the set of subsets of C. We assume that the preference relation of each student is responsive (see Roth, 1985), with demand q_s. Formally, we assume that for each $C' \subseteq C$ and for all $c, c' \in C \setminus C'$, the following hold: (i) if $|C'| < q_s$, then $C' \cup \{c\} P_s C' \cup \{c'\}$ if and only if $\{c\} P_s \{c'\}$; (ii) if $|C'| < q_s$, then $C' \cup \{c\} P_s C'$ if and only if $\{c\} P_s \emptyset$; (iii) if $|C'| > q_s$, then $\emptyset P_s C'$. The set of all responsive preferences is denoted by \mathcal{P}. For the preferences of students on individual courses we use the notation $P_s : c_1, c_2, ..., c_h$ meaning that
\{c_i\} P_s \{c_j\} \text{ for } i < j \text{ and } \{c_h\} P_s \emptyset. \text{ For each } S' \subseteq S, \text{ set } P_{S'} = (P_s)_{s \in S'} \in \mathcal{P}^{[S']}. \text{ For each } s \in S \text{ set } P_{-s} = P_{S \setminus \{s\}}.

A matching is a function \(\mu : S \cup C \rightarrow 2^C \cup 2^S\) such that, for each \(s \in S\) and each \(c \in C\), \(\mu(s) \in 2^C\), \(\mu(c) \in 2^S\), \(|\mu(c)| \leq q_c\) and \(c \in \mu(s)\) if and only if \(s \in \mu(c)\). The set of all matchings is denoted by \(\mathcal{M}\). Matching \(\mu\) is Pareto efficient if there is no matching \(\mu'\) such that \(\mu'(s) R_s \mu(s)\) for each \(s \in S\) and \(\mu'(s) P_s \mu(s)\) for at least one \(s \in S\).

Matching \(\mu\) is blocked by a pair \((s, c) \in S \times C\) if \(s \notin \mu(c)\) and the following two conditions are satisfied: (1) either \(c P_s \emptyset\) and \(|\mu(s)| < q_s\), or \(c P_s c'\) for some \(c' \in \mu(s)\); and (2) either \(|\mu(c)| < q_c\), or there exists \(s' \in \mu(c)\) such that \(s \succ_c s'\). Matching \(\mu\) is individually rational if, for each \(s \in S\) and each \(c \in \mu(s)\), \(c P_s \emptyset\). Finally, a matching \(\mu\) is stable for \((S, C, P, \succ, q_C)\) if it is individually rational and there exists no pair blocking it.

A mechanism is a function \(\varphi : \mathcal{P}^{[S]} \rightarrow \mathcal{M}\). It is efficient if \(\varphi(P)\) is a Pareto efficient matching for each \(P \in \mathcal{P}^{[S]}\). It is stable if \(\varphi(P)\) is a stable matching for each \(P \in \mathcal{P}^{[S]}\). It is strategy-proof if \(\varphi(P) R_s \varphi(P'_s, P_{-s})\) for each \(P \in \mathcal{P}^{[S]}, s \in S\) and \(P'_s \in \mathcal{P}\). It is group strategy-proof if there do not exist \(S' \subseteq S\) and \(P'_{S'} \in \mathcal{P}^{[S']}\) such that \(\varphi(P'_{S'}, P_{-S'}) R_s \varphi(P)\) for each \(s \in S'\) and \(\varphi(P'_{S'}, P_{-S'}) P_s \varphi(P)\) for at least one \(s \in S'\). If each agent has responsive preferences there exists a stable mechanism which is Pareto superior to all other stable mechanisms, which is called student-optimal stable mechanism and is denoted by \(\mu^S(P)\).

The priority structure \((\succ, q_C)\) satisfies essential homogeneity if there exist no \(a, b \in C\) and \(t, u \in S\) such that: (i) \(t \succ_a u\) and \(u \succ_b t\); (ii) there exist
$S_a, S_b \subseteq S \setminus \{t, u\}$ such that $|S_a| = q_a - 1$, $|S_b| = q_b - 1$ and $s \succ_a u$ for each $s \in S_a$, $s \succ_b t$ for each $s \in S_b$. Theorem 1 in Kojima (2013) proves that the essential homogeneity of a priority structure is equivalent to the existence of a stable and efficient mechanism and to the existence of a stable and strategy-proof mechanism.

3 Results

First, we prove that the student-optimal stable mechanism is group strategy-proof if the priority structure satisfies essential homogeneity. Theorem 3 in Kojima (2013) shows that if a priority structure satisfies essential homogeneity, the student-optimal stable mechanism can be obtained as a serial dictatorship, where the students choose in the order determined by the priorities of any course of minimal capacity. Thus, the result follows from the fact that any serial dictatorship is group strategy-proof. For completeness, we include a proof of this result in the appendix.3

Lemma 1 Assume that the priority structure (\succ, q_C) satisfies essential homogeneity. Then the student-optimal stable mechanism is group strategy-proof.

Integrating Lemma 1 and Theorem 1 in Kojima (2013) we obtain.

Theorem 1 Let (\succ, q_C) be a priority structure. A stable mechanism is strategy-proof if and only if it is group strategy-proof.

Obviously, Theorem 1 also implies that the existence of a group strategy-proof stable mechanism is equivalent to the priority structure being homogeneous.

The proofs of Lemma 1 and of Theorem 1 rely on the group strategy-proofness of serial dictatorships. Pápai (2000, Lemma 1) proves that group strategy-proofness is equivalent to non-bossiness and strategy-proofness. Thus, an alternative proof of our result consists in proving that essential homogeneity implies non-bossiness.

Pakzad-Hursos (2014) extends the results by Ergin (2002) and Kojima (2013) to priority-based resource allocation problems with contracts. He adapts the definition of essential homogeneity to this setup and introduces a student-lexicographic condition on the priorities of the courses. He proves that a stable and strategy-proof mechanism exists if and only if the priority structure satisfy essential homogeneity and the student-lexicographic condition.

The same argument used in the proof of Theorem 3 in Kojima (2013) implies that if the priority system satisfies essential homogeneity and the student-lexicographic condition, the student optimal stable matching can be obtained through a serial dictatorship. Thus, the result we obtained for the model without contracts extends directly to the model with contracts.

Allowing for multi-unit demand makes strategy-proofness a very requiring condition in assignment models with priorities. The reader might wonder
whether this is a consequence of the fact that the designer must consider any possible demand of the students. This assumption may appear too restrictive since in real world applications students can enroll in a limited number of courses. We prove that this is not the case: if students can enroll in at most two courses, essential homogeneity is still a necessary requirement for the existence of a strategy-proof mechanism.

Proposition 1 Assume that (\succ, q_C) is not essentially homogeneous. Then there exists $P \in \mathcal{P}^{[S]}$ such that $q_s \leq 2$ for each $s \in S$ and $P'_t \in \mathcal{P}$ with $q'_t \leq 2$, for some $t \in S$ such that, for any stable mechanism, $\varphi, \varphi (P'_t, P_{-t}) (t) P_t \varphi (P) (t)$.

The intuition behind Proposition 1 can be explained through a simple example. Let us assume that there are only two students, t and u and two courses, a and b, each with one vacant seat. Suppose (\succ, q_C) is not essentially homogeneous. Let $a, b \in C$ and $t, u \in S$ as in the definition of essential homogeneity and assume that $P_t : b, a, q_t = 2$, $P_u : a, b, q_u = 1$. There is a unique stable matching μ, where $\mu (t) = a$ and $\mu (u) = b$. In this situation, student t competes with student u for both courses, losing her favorite course b. However, if she reveals preferences $P'_t : b$, she no longer competes for course b since student u’s favorite course is a. Indeed, this deviation is profitable for t when any stable mechanism is employed because she obtains course b.

9
4 Conclusions

In this paper, we show the equivalence of imposing group strategy-proofness and strategy-proofness on stable mechanisms when studying the allocation of indivisible goods to a set of agents with multi-unit demand. Essential homogeneity in the priority structure is necessary and sufficient for the existence of such mechanisms. We also find that it is not possible to relax the characterization by imposing caps on agents’ demands. In addition, our results extend to the model with contracts. Future research looking for positive results on a larger set of priority structures should move in a different direction. For instance, it could explore non-revelation mechanisms, relaxing the equilibrium concept. An alternative to this approach is to reduce the stability requirement, when looking for strategy-proof mechanisms.

Appendix

A.1. Proof of Lemma 1

Let \(c \) be a course of minimal capacity, which is let \(c \) such that \(q_c = \min \{ q_{c'} \mid c' \in C \} \).

For each \(l = 1, 2, ..., |S| \), let \(s_l \in S \) be the \(l \)-th ranked student according to \(\succ_c \), formally \(s = s_l \) if and only if \(|\{ s' \in S \mid s' \succ_c s \}| = l - 1 \). For each \(P \in \mathcal{P}^{|S|} \), for each \(s \in S \) and each \(A \in 2^C \), let \(Ch_s(A) \) be student \(s \) favorite subset of \(A \), formally \(Ch_s(A) = \max_{P_s} \{ B \mid B \subseteq A \} \). For each \(l, 1 \leq l \leq |S| - 1 \) define \(A_l (P) \) recursively as follows: \(A_1 (P) = C \) and \(A_{l+1} (P) = \{ c' \in C \mid \bigcup_{l \leq l', c \in Ch_{s_l} (A_{l'}(P))} \{ s_{l'} \} < q_{c'} \} \). Finally, define a serial dictatorship \(\mu (P) \) as \(\mu (P) (s_l) = Ch_{s_l} (A_l (P)) \) for all \(l, 1 \leq l \leq |S| \). For each
c ∈ C, set \(\mu(P)(c) = \bigcup_{c \in \mu(P)(s_i)} \{s_i\} \). At her turn, in the order \(s_1, s_2, ..., s_l \), each student chooses her favorite set of courses that still have vacant seats.

Since \((\succ, q_C)\) satisfies essential homogeneity, Theorem 3 in Kojima (2013) implies \(\mu(P) = \mu^S(P) \) for each \(P \in \mathcal{P}^{|S|} \). Thus, in order to complete the proof of the claim, it suffices to show that mechanism \(\mu(P) \) is group strategy-proof.

The proof is by contradiction. Assume that there exists a nonempty set of agents \(S' \subset S \), \(P \) and \(P'_{S'} = \left(P'_s \right)_{s \in S'} \) such that \(\mu(P'_{S'}, P_{S \setminus S'}) \) \((s) \succ_s \mu(P) \) \((s) \) for each \(s \in S' \) and \(\mu(P'_{S'}, P_{S \setminus S'}) \) \((s') \) \(\prec_{s'} \mu(P) \) \((s') \) for some \(s' \in S' \).

Let \(l = \min \left\{ i \mid \mu(P'_{S'}, P_{S \setminus S'}) \) \((s_i) \neq \mu(P) \) \((s_i) \right\} \). For each \(i < l \), \(\mu(P'_{S'}, P_{S \setminus S'}) \) \((s_i) = \mu(P) \) \((s_i) \), then \(A_l \left(P'_{S'}, P_{S \setminus S'} \right) = A_l(P) \). First assume \(s_l \notin S' \). In this case \(\mu(P'_{S'}, P_{S \setminus S'}) \) \((s_l) = \mu(P) \) \((s_l) \), which yields a contradiction. Next assume \(s_l \in S' \), then \(\mu(P'_{S'}, P_{S \setminus S'}) \) \((s_l) \) \(\prec_{s_l} \mu(P) \) \((s_l) \). Since \(A_l \left(P'_{S'}, P_{S \setminus S'} \right) = A_l(P) \), \(\mu(P) \) \((s_l) \) \(\succ_{s_l} \mu(P') \) \((s_l) \), which yields a contradiction.

A.2. Proof of Theorem 1

By definition, a group strategy-proof mechanism is always strategy-proof. In order to complete the proof of the claim we next prove that a stable and strategy-proof mechanism is also group strategy-proof. By Theorem 1 in Kojima 2013 if a stable and strategy-proof mechanism exists, the priority structure \((\succ, q_C)\) is essentially homogeneous and the student-optimal stable mechanism is the unique strategy-proof mechanism. From Lemma 1 the student-optimal stable mechanism is group strategy-proof, which completes the proof of the claim.

A.3 Proof of Proposition 1

We generalize the argument from Example 1 in Kojima (2013). Let \(a, b \in C \)
and $t, u \in S$ as in the definition of essential homogeneity. Let P_t and P_u such that $P_t : b, a$ and $P_u : a, b$. Let $q_t = 2$ and $q_u = 1$. Let P'_t be such that $P'_t : b$. For each $s \in S_b \setminus S_a$, let $P_s : a, b$ and $q_s = 1$. For each $s \in S_b \setminus S_a$, let $P_s : b, a$ and $q_s = 1$. For each $s \in S_b \cap S_a$, set $P_s : a, b$ and $q_s = 2$. For each $s \in S \setminus (S_a \cup S_u \cup \{t, u\})$, let P_s be such that $\emptyset P_s a, \emptyset P_s b$. Then, in any stable mechanism φ, $\varphi(P)(t) = \{a\}$ and $\varphi(P'_t, P_{-t})(t) = \{b\}$, which completes the proof of the claim.

References

2017

Antonio Romero-Medina y Matteo Triossi

332. (Group) Strategy-proofness and stability in many-to-many matching markets
Antonio Romero-Medina y Matteo Triossi

331. Longevity, Human Capital and Domestic Investment
Francisco Parro y Francisco Szederkenyi y Patricio Valenzuela

330. The Inequality-Credit Nexus
Ronald Fischer, Diego Huerta y Patricio Valenzuela

329. Inequality, Finance, and Growth
Matías Braun, Francisco Parro y Patricio Valenzuela

328. Take-it-or-leave-it contracts in many-to-many matching markets
Antonio Romero-Medina y Matteo Triossi

2016

327. Do High-Wage Jobs Attract more Applicants?
Directed Search Evidence from the Online Labor Market
Stefano Banfi y Benjamín Villena-Roldán

326. Economic Performance, Wealth Distribution and Credit Restrictions with Continuous Investment
Ronald Fischer y Diego Huerta

325. Motivating with Simple Contracts
Juan F. Escobar y Carlos Pulgar

324. Gone with the wind: demographic transitions and domestic saving
Eduardo Cavallo, Gabriel Sánchez y Patricio Valenzuela

2015

323. Colaboración Público-Privada en infraestructuras: Reforma del sistema concesional español de autopistas de peaje
Eduardo Engel, Ronald Fischer, Alexander Galetovic y Ginés de Rus

322. The Joy of Flying: Efficient Airport PPP contracts
Eduardo Engel, Ronald Fischer y Alexander Galetovic

321. On the welfare cost of bank concentration
Sofía Bauducco y Alexandre Janiak
320. Banking Competition and Economic Stability
Ronald Fischer, Nicolás Inostroza y Felipe J. Ramírez

319. Persistent Inequality, Corruption, and Factor Productivity
Elton Dusha

318. Reputational Concerns in Directed Search Markets with Adverse Selection
Elton Dusha

Eduardo Engel Ronald Fischer Alexander Galetovic

316. Inequality and Private Credit
Diego Huerta, Ronald Fischer y Patricio Valenzuela

315. Financial Openness, Domestic Financial Development and Credit Ratings
Eugenia Andreasen y Patricio Valenzuela

314. The Whole is Greater than the Sum of Its Parts: Complementary Reforms to Address Microeconomic Distortions
(Por aparecer en The World Bank Economic Review)
Raphael Bergoeing, Norman V. Loayza y Facundo Piguillem

313. Economic Performance, Wealth Distribution and Credit Restrictions under variable investment: The open economy
Ronald Fischer y Diego Huerta

312. Destructive Creation: School Turnover and Educational Attainment
Nicolás Grau, Daniel Hojman y Alejandra Mizala

311. Cooperation Dynamic in Repeated Games of Adverse Selection
Juan F. Escobar y Gastón Llanes

310. Pre-service Elementary School Teachers' Expectations about Student Performance: How their Beliefs are affected by Mathematics Anxiety and Student Gender
Francisco Martínez, Salomé Martínez y Alejandra Mizala

309. The impact of the minimum wage on capital accumulation and employment in a large-firm framework
Sofía Bauducco y Alexandre Janiak

308. Can a non-binding minimum wage reduce wages and employment?
Sofía Bauducco y Alexandre Janiak

307. Capital Controls and the Cost of Debt
Eugenia Andreasen, Martin Schindler y Patricio Valenzuela

2014

Matteo Triossi
2013

305. The African Financial Development and Financial Inclusion Gaps
Franklin Allen, Elena Carletti, Robert Cull, Jun “Qj” Qian, Lemma Senbet y Patricio Valenzuela

304. Revealing Bargaining Power through Actual Wholesale Prices
Carlos Noton y Andrés Elberg

303. Structural Estimation of Price Adjustment Costs in the European Car Market
Carlos Noton

302. Remedies for Sick Insurance
Daniel McFadden, Carlos Noton y Pau Olivella

301. Minimum Coverage Regulation in Insurance Markets
Daniel McFadden, Carlos Noton y Pau Olivella

300. Rollover risk and corporate bond spreads
Patricio Valenzuela

299. Sovereign Ceilings “Lite”? The Impact of Sovereign Ratings on Corporate Ratings
Eduardo Borensztein, Kevin Cowan y Patricio Valenzuela

298. Improving Access to Banking: Evidence from Kenya
F. Allen, E. Carletti, R. Cull, J. “Qj” Qian, L. Senbet y P. Valenzuela

Ronald Fischer y Patricio Valenzuela

296. Banking Competition and Economic Stability
Ronald Fischer, Nicolás Inostroza y Felipe J. Ramírez

295. Trust in Cohesive Communities
Felipe Balmaceda y Juan F. Escobar

Matteo Triossi, Patricio Valdivieso y Benjamín Villena-Roldán

2012

293. Participation in Organizations, Trust, and Social Capital Formation: Evidence from Chile
Patricio Valdivieso - Benjamín Villena-Roldán

292. Neutral Mergers Between Bilateral Markets
Antonio Romero-Medina y Matteo Triossi

291. On the Optimality of One-size-fits-all Contracts: The Limited Liability Case
Felipe Balmaceda

290. Self Governance in Social Networks of Information Transmission
Felipe Balmaceda y Juan F. Escobar
289. Efficiency in Games with Markovian Private Information
Juan F. Escobar y Juuso Toikka

288. EPL and Capital-Labor Ratios
Alexandre Janiak y Etienne Wasmer

Sofía Bauducco y Alexandre Janiak

2011

286. Comments on Donahue and Zeckhauser: Collaborative Governance
Ronald Fischer

Benjamín Villena-Rodán y Cecilia Ríos-Aguilar

284. Towards a Quantitative Theory of Automatic Stabilizers: The Role of Demographics
Alexandre Janiak y Paulo Santos Monteiro

283. Investment and Environmental Regulation: Evidence on the Role of Cash Flow
Evangelina Dardati y Julio Riutort

282. Teachers’ Salaries in Latin America. How Much are They (under or over) Paid?
Alejandra Mizala y Hugo Ñopo

281. Acyclicity and Singleton Cores in Matching Markets
Antonio Romero-Medina y Matteo Triossi

280. Games with Capacity Manipulation: Incentives and Nash Equilibria
Antonio Romero-Medina y Matteo Triossi

279. Job Design and Incentives
Felipe Balmaceda

278. Unemployment, Participation and Worker Flows Over the Life Cycle
Sekyu Choi - Alexandre Janiak -Benjamín Villena-Roldán

277. Public-Private Partnerships and Infrastructure Provision in the United States
Eduardo Engel, Ronald Fischer y Alexander Galetovic

2010

276. The economics of infrastructure finance: Public-private partnerships versus public provision
Eduardo Engel, Ronald Fischer y Alexander Galetovic

* Para ver listado de números anteriores ir a http://www.cea-uchile.cl/*