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Abstract

We study a class of repeated games with Markovian private information and charac-

terize optimal equilibria as players become arbitrarily patient. We show that seemingly

non-cooperative actions may occur in equilibrium and serve as signals of changes in pri-

vate information. Players forgive such actions, and use the information they convey to

adjust their continuation play. However, to forgive is not to forget: players keep track of

the number of aggressions and enter into a punishment phase if that number becomes sus-

piciously high. Our model explains features of long-run relationships that are only barely

understood, such as equilibrium defaults, unilateral price cuts, collusive price leadership,

graduated sanctions, and restitutions. We also explore a model in which interactions are

frequent and show how increasing the persistence of the process of types reduces informa-

tional frictions.

Keywords: Repeated games, adverse selection, signaling, tacit collusion, price lead-

ership, price cuts, equilibrium defaults, graduated sanctions.

1 Introduction

During trench warfare in the First World War (1914-1918), frontline soldiers often refrained

from attacking the enemy, provided that their restraint was reciprocated by soldiers on the

other side. Army commanders were aware of this tendency towards non-aggresion and would

order raids to correct the “offensive spirit” of the troops (Ashworth 1980, Axelrod 1984).

Enemy soldiers would generally not be able to discern if aggressions were caused by oppor-

tunistic behavior or by military orders, and would be reluctant to return to the non-aggressive

behavior. However, cooperation generally restarted after some time had elapsed, and soldiers

were successful at maintaining low levels of aggression for significant periods of time.

Cooperative relationships often exhibit this type of dynamics. For example, it has been

long recognized that firms trying to avoid price competition cycle between high and low prices

(Markham 1952, Bresnahan 1987, Scherer and Ross 1990), sovereign countries that default on
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†Pontificia Universidad Católica de Chile, E-mail: gaston@llanes.com.ar

1



their obligations are temporarily excluded from international capital markets but are eventu-

ally able to borrow again (Cole, Dow, and English 1995, Tomz 2012), managers and unions

enter into labor conflicts which are generally followed by periods with high production and

generous bonuses (Li and Matouschek 2013), and governments in a self-enforcing trade agree-

ment often raise and lower their import tariffs, even though a high tariff may be detrimental

to foreign partners (Bagwell and Staiger 2005).

In this paper, we shed light on these phenomena by studying a discrete-time infinitely-

repeated game with (imperfectly) persistent private information. Two players make perfectly

observable decisions at each round. Player 1 is privately informed about his own payoffs,

which evolve according to a finite Markov chain. Importantly, no communication is allowed,

which implies that player 2 can learn about player 1’s types only by observing player 1’s

actions.

We show that optimal equilibrium dynamics may allow for apparent cooperation breaks

(such as aggressions, price cuts, debt defaults) that serve as a signal of optimal continuation

play. More generally, in our incomplete information model, equilibrium actions have an in-

formational content that determines the most profitable course of play for the relationship.

We show how optimal equilibria make use of endogenously generated information and explain

behaviors that are difficult to square with existing models.

Our main theoretical result is the characterization of a class of Pareto-optimal equilibria as

players become arbitrarily patient. This characterization reduces the problem of determining

the informational content of the informed player’s actions, as a function of history, to a

dynamic programming equation defined on the set of total expected payoff functions. Our

dynamic programing formulation is new to the literature and we provide several examples

that prove its usefulness.

Section 2 illustrates our approach and results by studying a two-player two-action prison-

ers’ dilemma with incomplete information. We assume that player 1 has private information

about his cost of investment in a joint project. When his cost is low, the situation is a sym-

metric prisoners’ dilemma game, and when his cost is high it is no longer socially desirable

for the players to invest. Player 1’s cost evolves with positive persistence. The problem is

subtle because player 2 does not observe player 1’s type, nor can player 1 communicate his

cost. We find optimal equilibria in two steps.

First, we relax incentive constraints by allowing players to commit to strategies at the

beginning of the game to maximize the sum of expected payoffs. We reformulate this problem

as a dynamic programming problem having as state variable the belief about player 1’s type

conditional on public information. Two interesting optimal dynamics arise when incentives

are ignored. Under reactive-signaling dynamics, the informed party keeps signaling his type

while player 2 imitates the behavior of the informed player. Under time-off dynamics, a failure

to invest by the high cost player 1 triggers a waiting phase. During the waiting phase, both

players refrain from investing during a fixed number of periods. Once the waiting phase is
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over, player 2 and the low-cost player 1 resume investments and a waiting phase is restarted

when player 1’s cost becomes high again.

Second, we prove that optimal dynamics can actually be mimicked when incentives are

taken into account. We build strategies in the repeated game that keep track of the informed

player’s actions and test whether they are sufficiently likely to come from the underlying

optimal decision rule.1 Optimal play may require that the informed agent plays apparently

hostile or aggressive actions. The uninformed agent will forgive such behaviors and continue

to play according to the optimal rule. However, to forgive is not to forget : the uninformed

agent keeps track of the number of aggressions, and players enter a punishment phase if that

number becomes suspiciously high.

This simple model shows that adverse selection and imperfect communication can restrict

the set of equilibrium payoffs to a strict subset of feasible individually-rational payoffs even

when players are arbitrarily patient (Radner, Myerson, and Maskin 1986, show a similar result

for repeated games with moral hazard). In the optimal equilibrium, the informed party has

to shirk in some rounds, and has to incur in costly gestures or let time pass by to persuade

the uninformed player to resume investments. These dynamics imply substantive welfare

costs, and optimal equilibrium payoffs are bounded away from first-best payoffs, even as the

discount factor goes to 1. If the costs of incomplete information are large enough, the optimal

equilibrium consists of repetitions of the static Nash equilibrium.

Sections 3 and 4 extend the analysis to general games of one-sided incomplete information.

We formally establish the upper bound for equilibrium payoffs by studying an average-reward

optimality equation (AROE) for a hidden-state Markov decision problem. The AROE is

a Bellman equation tailored to study undiscounted dynamic models. The hidden variable

in the Markov decision process is player 1’s type, which together with controls determine

a distribution over actions. Once actions are observed, they are used to update beliefs.

Beliefs about player 1’s type, given observed actions, are the state variable in the dynamic

programming equation. At a more conceptual level, the AROE captures a basic trade-off

between separating and pooling control rules. If player 1 pools given a public history, player

2 can better optimize his period payoffs. On the other hand, when different types of player

1 separate, continuation public beliefs are more precise and therefore the relationship gains

from better information. We also show how, under ergodicity restrictions on the process of

beliefs, strategies that forgive but do not forget can be designed to virtually attain the upper

bound in the repeated game with low discounting.

Section 5 studies games with separating and monotonic dynamics. In these games, period

payoffs have strictly increasing differences in actions and types, and player 1 has a set of

actions which is sufficiently numerous. We show that player 1’s actions are strictly increasing

in his type and therefore he keeps signaling his current conditions. These results help explain

a number of phenomena in long-run relationships that are only barely understood.

1The process of actions is not a Markov process, so it is hard to perform tests based on it. We sidestep this
difficulty by testing observed actions conditional on simulated public beliefs. See Section 4 for details.
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In Section 5.1, we use the results of Section 5 to characterize the optimal collusive scheme

in a Bertrand game of differentiated products in which one of the firms has private informa-

tion about his costs. Consistent with case studies (Marshall and Marx 2013), in our model

unilateral price changes occur on the path of play. Our model can be interpreted as a model

of collusive price leadership (Stigler 1947, Markham 1951, Scherer and Ross 1990), in which

an uninformed firm follows the informed firm’s price changes.2 We show that the dynamics

of price leadership may involve significant costs for leader and follower. When cost increases,

the informed firm raises his price, and experiences a short-term loss until its price raise is

matched by the follower. Likewise, the follower experiences a short-term loss when the leader

lowers his prices after a cost decrease.3 Our model therefore provides concrete answers to

some unsettled issues in industrial organization and antitrust.4

We also apply our results to provide a rational to the commonly referred practice of

graduated sanctions when collectively managing common-pool resources. As Ostrom’s (1990)

shows, in several successful long-run relationships, after a member breaks a norm, cheated

partners mildly adjust their continuation actions. The use of severe punishments, like Nash

reversion, is the exception rather than the norm. As Dixit (2009) explains, this evidence is

difficult to reconcile with existent theoretical frameworks. Our model fills this gap. In Section

5.2, we specialize our model to a repeated collective action game in which player 1 has private

information about the benefits of a project. On the path of play, the lower the action by the

informed player, the lower the expectation the uninformed player has about the relationship

conditions, and therefore the lower player 2’s action. Player 1 can also make restitutions that

positively affect player 2’s current payoffs and his continuation beliefs and actions.

Section 6 refines our analysis by studying the game in Section 2 as interactions become

more frequent. Following a tradition initiated by Abreu, Milgrom, and Pearce (1991), we

observe that as interactions become more frequent not only the discount factor increases

but also the process of hidden types becomes more persistent. We show that changing the

persistence of the process of types has important effects on the dynamics of cooperation and

equilibrium payoffs. In the limit, signaling becomes inexpensive compared to the benefits

from more precise beliefs and, as a result, incomplete information has virtually no costs.

2Collusive price leadership is relevant in many industries. Allen (1976), for example, documents collusive
price leadership in the market of steam turbine generators in the 1960s and 1970s. In Section 5.1 we discuss
additional empirical evidence.

3These short-term losses are significant in many industries. Clark and Houde (2013) study gasoline prices
in Quebec, and find that a small price premium (2 cents or more per liter) for a few hours can result in a
significant reduction in a station’s sales for the day (around 35% to 50%).

4Green and Porter (1984), Abreu, Pearce, and Stacchetti (1986), and Rotemberg and Saloner (1986) study
collusive equilibria with high and low price cycles, in which price movements are simultaneous across firms.
Thus, there are no unilateral price changes or price leaders. Rotemberg and Saloner (1990) study collusive
price leadership in a repeated Bertrand game, imposing exogenous constraints on strategies and on the timing
of the game, and find that the leader always benefits more from price leadership than the follower. All these
models have Pareto efficient equilibria if players are sufficiently patient. We study the optimal equilibrium
without imposing exogenous restrictions, and show that price leadership can arise as an equilibrium outcome.
This equilibrium may involve significant profit losses for both the leader and the follower, and as a result, may
be inefficient even as the discount factor goes to 1.
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When players can exchange cheap-talk messages right before choosing actions, Escobar and

Toikka (2013) and Hörner, Takahashi, and Vieille (2015) show that the folk theorem obtains.

With communication, actions have no signaling content and the dynamics of cooperation

are similar to those of games with complete information and changing types if players are

sufficiently patient (Rotemberg and Saloner 1986, Dutta 1995). In those models, actions

can perfectly respond to current conditions and there is no room (on the path of play) to

observe hostile behaviors (as we do in reality). Our assumption of no communication is just

a simplifying one, and acknowledges the fact –articulated by Marschak and Radner (1972)

among others– that oftentimes parties encounter nontrivial communication costs.5

Our results connect to the literature on repeated games with Markovian hidden types.

Escobar and Toikka (2013), Renault, Solan, and Vieille (2013), and Hörner, Takahashi, and

Vieille (2015) characterize optimal equilibria in games with communication. As explained

above, dynamics in these models are very different from the ones in this paper. Athey and

Bagwell (2001) and Athey and Bagwell (2008) characterize optimal equilibria in Bertrand

games without communication, but their analysis exploits the special structure of their in-

elastic demand model. Hörner, Rosenberg, Solan, and Vieille (2010) study equilibrium values

in the zero-sum case.6 Our contribution is to characterize optimal equilibrium in a fairly

general class of games with hidden types and no communication.

Other papers have also focused on defaults and cooperation cycles. Liu (2011) and Liu and

Skrzypacz (2014) study games between a long-run player and a sequence of short-run players.

The long-run player can be opportunistic or behavioral, and this is defined once and for all

at the beginning of the game. Short-run players cannot freely access to the whole history of

actions. This generates cycles of cooperation in which the long-run player builds and exploits

his reputation.7 Acemoglu and Wolitzky (2014) study a reputation model in which players

have limited and noisy observations. In all these models, memory restrictions play a key role

determining cycles. The force in our model is unrelated to memory limits.

We finally observe that in games with imperfect monitoring, players can also cycle between

cooperative and uncooperative actions (Green and Porter 1984, Abreu, Pearce, and Stacchetti

1986, Abreu, Pearce, and Stacchetti 1990, Abreu, Milgrom, and Pearce 1991), but equilibrium

dynamics differ significantly from the ones presented in our paper.

Green and Porter (1984) and Abreu, Pearce, and Stacchetti (1986) study repeated games

with quantity competition, and characterize equilibria with high and low price regimes. Tran-

sitions between regimes depend on the realization of an exogenous random factor affecting

demand. We show that in the case of adverse selection, regime changes depend on players’

5Price discussions between competitors are generally illegal. Ashworth (1980) documents the communication
problems faced by enemy troops trying to avoid confrontation during World War I. When discussing limited
war, Schelling (1960) explains that “an agreement on limits is difficult to reach . . . because communication
becomes difficult between adversaries in a time of war.”

6Other papers studying repeated games with Markovian types include Gale and Rosenthal (1994), Cole,
Dow, and English (1995), and Phelan (2006). These papers focus on specific equilibria that are typically
bounded away from the Pareto-frontier.

7In those models, defaults are strategic while in our model defaults are mainly non-strategic.
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actions. For example, low-price regimes (price wars) may be triggered by price cuts, and

returning to high-price regimes may require unilateral price rises.

Abreu, Milgrom, and Pearce (1991) studies a prisoners’ dilemma with imperfect monitor-

ing and shows that, under certain conditions, cooperation can be broken and never resumed

in the optimal equilibrium. There is therefore room for renegotiating punishments. In our

model, in contrast, virtually no value is burnt (optimal equilibria sustains an informationally-

constrained welfare optimum) and there is little room for renegotiation.

2 An Example

Two players, i = 1, 2, interact repeatedly in a public-good investment game. Every period,

players decide whether to invest (I) or not to invest (N). The investment may represent an

advertising expenditure in a joint-advertising campaign, an investment in R&D in a research

joint venture, or costly effort in team of co-workers.

Stage payoffs are equal to investment revenues minus cost. If both players invest, each

player obtains a revenue of a. If only one player invests, each player obtains a revenue of b.

If no player invests, both players obtain zero revenues. Let 0 < b < a. Player 1’s investment

cost in period t is θt ∈ {l, h}, where l < h, and Player 2’s investment cost is l every period.

Table 1 summarizes game payoffs.

I N

I a− l , a− l b− l , b

N b , b− l 0 , 0

θt = l

I N

I a− h , a− l b− h , b

N b , b− l 0 , 0

θt = h

Table 1: Player 1’s cost is privately known. Joint investment is socially desirable only when
θt = l.

The outcome (I, I) (resp. (N,N)) is socially desirable if and only if θ = l (resp. θ = h).

From a strategic perspective, for θ = l the game is a prisoners’ dilemma, whereas for θ = h

the only Nash equilibrium coincides with the socially desirable outcome (N,N). We capture

these restrictions by assuming that 2(a − l) > 0, 2a − l − h < 0, 2b − l < 0, and a − l < b.

Together, these assumptions imply that 0 < b < l
2 < l < a < l+h

2 < h and a− l < b.

The cost parameter θt is realized at the beginning of period t and is privately known by

player 1. Once player 1 privately observes his type, θt, players simultaneously choose actions.

Monitoring is perfect, that is, actions are publicly observed. Player 1’s type evolves according

to a Markov process with transition probabilities given by

P[θt = l | θt−1 = l] = λ ≥ 1

2
P[θt = h | θt−1 = h] = µ.
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where λ+µ ≥ 1 or, equivalently, the process of types has positive persistence. For simplicity,

we assume that the initial type is drawn according to P[θ1 = l] = λ. Players have a common

discount factor δ < 1 and maximize the discounted sum of period payoffs. This is a repeated

game with Markovian incomplete information. Whereas player 1 knows that whole history of

transpired types and play, player 2 can condition his behavior only on the history of actions.

It is worth pointing out two benchmarks that are relatively easy to solve. With complete

information, the type of player 1, θt, is publicly observed at the beginning of round t. If

δ is large enough, we can construct a trigger-strategy equilibrium in which play is efficient

and both players invest in t if and only if θt = l (Rotemberg and Saloner 1986, Dutta 1995).

Another interesting benchmark is the case of incomplete information and communication, in

which player 1 is privately informed about θt but can send a cheap-talk message to player 2

before actions are decided. If δ is sufficiently big, one can construct an efficient equilibrium in

which player 1 truthfully reveals his type and both players invest only when θt = l (Escobar

and Toikka 2013). In this paper, we are interested in characterizing the optimal equilibrium

with incomplete information and no communication.

Before describing equilibrium behavior, let us characterize optimal dynamics ignoring

incentive constraints. Observe that even when incentives are ignored and player 1 can make

use of all available information (the history of play and his privately-held information), player

2 can only condition his behavior on public information (the history of play). To study this

problem, we introduce controls. A control for player 1 is a pair σ1 = (σ1(l), σ1(h)) ∈ {I,N}2,

whereas a control for 2 is simply σ2 ∈ {I,N}. A control σ = (σ1, σ2) determines total period

total payoffs, given beliefs. If the control is INI and the public information determines

pt = P[θt = l], then expected period payoffs are

pt
(
(1− δ)2(a− l)

)
+ (1− pt)

(
(1− δ)(2b− l)

)
.

But a control also determines player 2’s continuation beliefs, given a current distribution on

1’s types. For example, suppose the belief at time t is P(θt = l) = pt. Given this belief, if

player 1’s control has σt1(l) = I and σt1(h) = N (that is, player 1 invests if and only if her

type is l); then period t+ 1’s probabilities depend on the action of player 1 at period t:

Pσ[θt+1 = l | at1 = I] = λ

Pσ[θt+1 = l | at1 = N ] = 1− µ.

If player 1’s control has σt1(l) = σt1(h) = N instead (that is, player 1 does not invest for any

type realization); then period t+ 1 probabilities are given by:

Pσ[θt+1 = l | at1 = N ] = pt λ+ (1− pt) (1− µ).

Thus, for player 2, the probability that player 1’s type is l in period t + 1 depends on the
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control rule in place in period t and the observation made in t.

We consider the belief held by player 2 at t about 1’s type, pt = P(θt = l), as a state

variable. A σ = (σ1(l), σ1(h), σ2) will be characterized by a triple XY Z. Let w(p) be the

value for the problem of maximizing total discounted expected payoffs given beliefs p over

all possible strategies. The above discussion leads to the following dynamic programming

characterization for the value w(p):

w(p) = max
{
wXY Z(p) | X,Y, Z ∈ {I,N}

}
, (2.1)

where

wIII(p) = p (1− δ) 2(a− l) + (1− p) (1− δ) (2a− l − h) + δ w(p λ+ (1− p)(1− µ)),

wIIN (p) = p (1− δ) (2b− l) + (1− p) (1− δ) (2b− h) + δ w(p λ+ (1− p)(1− µ)),

wNNN (p) = (1− δ) 0 + δ w(p λ+ (1− p)(1− µ)),

wNNI(p) = (1− δ) (2b− l) + δ w(p λ+ (1− p)(1− µ)),

wINI(p) = p ((1− δ) 2(a− l) + δ w(λ)) + (1− p) ((1− δ) (2b− l) + δ w(1− µ)),

wINN (p) = p ((1− δ) (2b− l) + δ w(λ)) + (1− p) ((1− δ) 0 + δ w(1− µ)),

wNII(p) = p ((1− δ) (2b− l) + δ w(λ)) + (1− p) ((1− δ) (2a− l − h) + δ w(1− µ)),

wNIN (p) = p ((1− δ) 0 + δ w(λ)) + (1− p) ((1− δ) (2b− h) + δ w(1− µ)).

The optimal choice of control will trade-off current payoffs and the distribution over con-

tinuation beliefs. It is straightforward to see that controls IIN , NNI, NII, and NIN are

never optimal. For example, under control NNI player 1 does not invest but player 2 does.

This provides less period payoffs than the pooling control NNN . Since both controls deter-

mine the same distribution over continuation beliefs, control NNI cannot be optimal for any

belief p.

The following lemma summarizes some important properties of w(p). All omitted proofs

are in the Appendix.

Lemma 1. w(p) is nondecreasing, continuous, and convex.

To understand the convexity property, fix beliefs p = P(θt = l) yielding value w(p).

Suppose now that we are offered more detailed information about this probability: we are

told that P(θt = l) = q with probability π and P(θt = l) = q′ with probability 1 − π, such

that p = πq + (1 − π)q′. Now, value is w(q) with probability π and w(q′) with probability

1− π. Convexity implies that we always prefer to have more information:

w(p) = w(πq + (1− π)q′) ≤ π w(q) + (1− π)w(q′).

Intuitively, when information is revealed, the optimal control can be adjusted to yield better

outcomes.
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The solution to (2.1) can result in pooling dynamics, in which players play a fixed action

profile in all rounds. Assuming a − b < h/2, the pooling control III is never optimal as

the incremental social benefit of 1’s investment is low compared to his high cost h.8. When

solving (2.1), it is enough to focus on controls NNN , INI, and INN .

Lemma 2 shows that optimal dynamics take very simple forms. The second-best rule

generates reactive-signaling dynamics if player 1 invests when his cost is low and does not

invest when his cost is high, and player 2 imitates the action of player 1 in the previous

period. The second-best rule generates time-off dynamics if player 1 invests only if he is

in good standing and his cost is low, and player 2 invests if and only if player 1 is in good

standing. Player 1 is in good standing if he invested in the previous period, or if he did not

invest in the previous period, but was in good standing τ̂ + 1 periods before, where τ̂ is a

natural number (possibly equal to 0).

Lemma 2. If a− b < h/2 and λ > l−2b
2(a−b)−l , the second-best rule generates reactive-signaling

or time-off dynamics.

The restriction to λ > l−2b
2(a−b)−l ensures that the control INI is optimal at belief p = λ.

The Lemma shows that if player 1 does not invest at belief λ, then player 1 will “signal” a

change of type by investing to prompt player 2 to invest too, or, alternatively, player 2 will

wait for τ̂ rounds to become optimistic about player 1’s cost and resume investments. This

result rules out dynamics in which signaling can occur only after an exogenous number of

rounds.

The choice between reactive signaling and time-off dynamics depends on the comparison

between the signaling cost and the opportunity cost of missed cooperation. The signaling

cost is l − 2b, which is the welfare loss suffered when only one player invests. Under reactive

signaling dynamics, players incur in a signaling cost every time player 1’s type changes. Under

time-off dynamics, players incur in a signaling cost when player 1’s type goes from l to h, and

when a waiting phase ends, if the type of player 1 is h. Observe that under time-off, players

may not incur in the signaling cost when a waiting phase ends, because the type of player 1

may be l when the waiting phase ends. The opportunity cost of missed cooperation is 2(a− l),
and is the gain in welfare that would have accrued if both players had invested and cost was

low. The cost of missed cooperation is incurred during a waiting phase in a time off rule. The

total expected opportunity cost of missed cooperation depends on the optimal length of the

waiting phase.

Let β = l−2b
2(a−l) measure the signaling cost relative to the opportunity cost of missed

cooperation. The following lemma shows how optimal dynamics depend on the parameters

of the model as the discount factor goes to 1.

Lemma 3. Assume that a − b < h/2 and 1 < (λ + µ)(1 − λ
2 ). There exists δ̄ < 1 such that

for all δ > δ̄, there exists β0 ∈]0, λ
2(1−λ) [ such that

8Another reason III is not optimal is that it does not improve information in the continuation nodes
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i. For β < β0, the optimal rule generates time-off dynamics;

ii. For β ∈]β0,
λ

2(1−λ) [, the optimal rule generates reactive signaling dynamics;

iii. For β > λ
2(1−λ) , the optimal rule generates a path in which no player ever invests.

This lemma fully characterizes optimal dynamics under the added assumption that the

process of types is persistent enough (so that 1 < (λ+µ)(1− λ
2 )).9 When the signaling cost is

small, time-off is optimal as even a short waiting period ensures that the benefits of mutual

cooperation are realized. As β increases, the waiting period in time-off dynamics increases,

and it is better to capture the benefits of cooperation by allowing player 1 to signal his changes

in types. When the signaling costs are too high, there is no room for cooperation and players

payoffs are 0.10

So far, we have ignored incentive problems. When thinking about the incentives player

1 would face to play according to optimal dynamics, one could be tempted to argue that

those dynamics effectively “punish” a defection by player 1. For example, under reactive

signaling, if player 1 does not invest when his cost is low, player 2 reacts by not investing in

the next period, and this will provide incentives to player 1 to invest if and only if his cost

is low. However, this type of argument can work only for some parameter values as reactive

signaling and time-off dynamics arise to optimize the discounted sum of payoffs subject to

informational constraint, but do not take into account incentives. It is therefore not obvious

whether optimal dynamics payoffs can be attained when incentives are taken into account.

We now show it is always possible to find equilibrium strategies such that equilibrium play

is arbitrarily close to second-best optimal dynamics. For concreteness, we take parameters

such that, according to Lemma 3, optimal dynamics are reactive signaling. Under reactive

signaling, the process of beliefs (pt)t≥1, with pt = P[θt = l | ht−1] and ht−1 the public history

up to and including round t− 1, is Markovian, with transitions that can be drawn as shown

in Figure 1.

λ 1− µ

1− λ

at1 = N

1− µ

at1 = I
at2 = I at2 = N

Figure 1: Dynamics of beliefs (pt)t≥1 when players use an optimal rule resulting in reactive
signaling dynamics. The support of (pt)t≥1 is the set {λ, 1− µ}.

9In the Appendix we dispense with this restriction and provide a complete characterization of optimal
dynamics

10Observe that the bounds in the Lemma improve upon the restrictions in Lemma 2 to have some cooperation.
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Let vi ∈ R be the limit average payoff accruing to player i under the reactive signaling

rule and assume vi > 0. This means that both players get more payoffs from the optimal

dynamics than from the static Nash equilibrium resulting in payoffs (0, 0).

Ensuring appropriate behavior by player 2 is simple as any deviation by 2 is observable

and can be immediately punished by reverting to the static Nash equilibrium. Incentives

for player 1 are more subtle because player 2 cannot observe player 1’s type, nor can he tell

whether a failure to invest by player 1 is acceptable (because player 1’s cost is high) or not.

However, as play transpires, player 2 can keep checking whether player 1’s behavior seems

likely to have been generated from the reactive signaling rule. By simulating a process of

beliefs from player 1’s actions, the uninformed player 2 can check whether the proportions of

investment and no-investment actions seem credible, conditional on a simulated belief. For

example, out of all the visits to state λ, player 2 can check whether player 1 has played I in

a proportion close to λ. A failure to do so would be observable and easily punished by Nash

reversion.

The strategies discussed above continuously check whether players’ actions seem credible.

They are similar to strategies used in repeated games with imperfect monitoring (Radner 1981)

and in dynamic mechanism design (Jackson and Sonnenschein 2007, Escobar and Toikka

2013).11 In our construction of strategies, while player 2 can tolerate some failures (i.e.,

periods in which player 2 invested but player 1 did not), he keeps track of the number of

offenses, and players enter a punishment phase if that number becomes suspiciously high.12

Our analysis has three main implications. First, as we explained above, informational

constraints are key to determine optimal equilibrium dynamics. While incentive problems

disappear as players become more patient, optimal equilibrium are bounded away from first-

best payoffs. Indeed, with complete information (or with incomplete information and com-

munication), players can attain average total payoffs equal to 2(a − l) 1−µ
2−λ−µ . Assuming the

conditions under which reactive-signaling is optimal in Lemma 2, under incomplete informa-

tion total payoffs are
(
2λ(a− l)− (l − 2b)(1− λ)

) 1−µ
2−λ−µ . Moreover, when the signaling costs

are too high, the only equilibrium of the game is the repetition of the static Nash equilibrium

even when the discount factor is arbitrarily close to 1.13 While communication obviously

expand the set of equilibria, we seem to be the first ones fully characterizing the gains from

communication in a repeated game model.14

Second, cooperation dynamics differ from those found in previous papers. For example,

11As in all these papers, our strategies are derived from a test based on necessary conditions for “appropriate
behavior”, and we then show that these conditions are actually sufficient to align incentives.

12In this example, punishments simply consist in Nash reversion. In the general model of Section 3, punish-
ments are more complex in order to guarantee that adhering to these punishments is incentive compatible for
both players.

13As Hörner, Takahashi, and Vieille (2015) show, the set of equilibrium payoffs in the game with commu-
nication depends on the transitions only through the invariant distribution (Corollary 3). In contrast, in our
model without communication transitions do matter to determine the equilibrium set.

14Awaya and Krishna (2014) study a repeated Bertrand game with imperfect private monitoring and show
conditions under which the set of equilibrium payoffs without communication is strictly contained in the set of
equilibrium payoffs with communication. They obtain a lower bound for the gap.
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(a) F∗ is the set of limit equilibrium payoffs
in the game with complete information or in-
complete information and communication. It
contains all feasible payoffs above the minmax
vector (0, 0).

(0, 0)

u2

u1

V

E∗

(b) E∗ is the set of limit equilibrium payoffs
in the game with incomplete information and
no communication. It is strictly contained in
F∗. When signaling is too costly, as detailed
in Lemma 2, E∗ = {(0, 0)}.

Figure 2: The equilibrium sets for games with and without communication.

when monitoring is imperfect, punishments are triggered on the equilibrium path and coop-

eration may be resumed exogenously (following a randomization device as in Abreu, Pearce,

and Stacchetti 1990) or not resumed at all (as in Abreu, Milgrom, and Pearce 1991). In our

model, actions have signaling content and cooperation is always resumed, either by taking a

costly action (as in reactive signaling) or after a cooling-off period has elapsed (as in time-off

dynamics). Since continuation payoffs are always close to optimal, virtually no value is burnt

on the path of play and, in contrast to models with imperfect monitoring, there is little room

for renegotiation.

Third, under reactive signaling, the on-path behavior of player 2 is identical to a tit-for-tat

strategy. While tit-for-tat is an intuitive strategy and has received attention in the literature

(Axelrod 1984, Kalai, Samet, and Stanford 1988, Kreps, Milgrom, Roberts, and Wilson 1982),

no equilibrium framework exists under which it emerges as the optimal outcome. Our results

fill this gap by showing how informational frictions make tit-for-tat a desirable strategy.

3 Model

We consider an infinitely repeated game played by 2 players. At each t ≥ 1, player 1 is

privately informed about his type θt ∈ Θ. Players simultaneously make decisions ati ∈ Ai.

Let A = A1 × A2. We assume that A1, A2, and Θ are finite sets. Within each round t, play

transpires as follows:

t.0 A randomization device χt is publicly realized

12



t.1 Player 1 is privately informed about θt ∈ Θ

t.2 Players choose actions ati ∈ Ai simultaneously

t.3 Players observe the action profile chosen at ∈ A

We assume players know their payoffs. The period payoff function for player 1 is u1(a, θ),

whereas player 2’s payoff is u2(a). We will sometimes abuse notation and write ui(a, θ), even

when player 2’s payoff does not depend on θ. Players rank flows of payoffs according to

(1− δ)
∑

t≥1 δ
t−1ui(a

t, θt), where δ < 1 is the common discount factor.

The realizations of the randomization device are independent across time and distributed

according to a uniform in [0, 1]. The initial type of player 1, θ1, is drawn from a distribution

p1 ∈ ∆(Θ). The process (θt)t≥1 evolves according to a Markov chain with transition matrix

P (Norris 1997). Player 1’s private types, (θt)t≥1, evolve according to a Markov chain (p1, P ),

where p1 ∈ ∆(Θ) and P is a transition matrix on Θ. We assume that the process of types has

full support. This means that for all θ, θ′ ∈ Θ, P (θ′ | θ) > 0. Let π ∈ ∆(Θ) be the stationary

distribution for P .

A strategy for player 1 is a sequence of functions s1 = (st1)t≥1 with st1 : Θt×At−1×[0, 1]t →
A1, whereas a strategy for the uninformed player 2 is s2 = (st2)t≥1 with st2 : At−1×[0, 1]t → A2.

A strategy profile s∗ = (s∗1, s
∗
2) is a perfect Bayesian equilibrium if there exists a system

of beliefs constructed from Bayes rule (when possible) such that s∗i is sequentially rational

(Fudenberg and Tirole 1991). The set of perfect Bayesian equilibrium payoffs will be denoted

E(δ, p1) ⊆ R2.

A decision rule is a sequence f = (f t)t≥1 with f t = (f t1, f
t
2) and f t1 : At−1 × Θt ×

×[0, 1]t → ∆(A1) and f t2 : At−1 × [0, 1]t → ∆(A2). A decision rule determines a possibly

mixed action for each player i as a function of the publicly observed history of action profiles

and randomizations, and his own private history of realized types. Any decision rule f induces

a probability distribution over histories. We can therefore define the vector of expected payoffs

given a decision rule f as

vδ(f) = (1− δ)Ef [
∑
t≥1

δt−1u(at, θt)] ∈ R2.

Let V (δ, λ) = {v = vδ(f) ∈ R2 for some decision rule f} be the set of all (constrained) feasible

payoffs that players can attain by employing arbitrary decision rules f . In passing, we note

that V (δ, p1) ⊆ R2 is convex and compact.

It is important to observe that our definition of decision rules and set of feasible payoffs

differ from those encountered in studies of stochastic games (Dutta 1995, Hörner, Sugaya,

Takahashi, and Vieille 2010) and repeated games with incomplete information and commu-

nication (Escobar and Toikka 2013, Hörner, Takahashi, and Vieille 2015). Our definition

of feasible payoffs already takes into account the fact that players cannot communicate and

therefore player 2 can only decide based on public information.

13



Our focus will be on equilibrium strategies and payoffs. Since any strategy profile s =

(si)
2
i=1 induces a decision rule, we deduce E(δ, p1) ⊆ V (δ, p1) for all δ < 1.

4 Analysis

We will characterize equilibrium play in two steps. In the first step, we provide a dynamic

programming formulation for efficient decision rules. This characterization will employ some

tools from undiscounted optimization problems with partially observed states. In the second

step we show how such efficient rule can be approximated by equilibrium play of the infinitely

repeated game.

4.1 Efficient Payoffs

A decision rule f is efficient if for some α ∈ R2
++, f is a solution to

q(α) = max{α · v(f) | f is a decision rule}. (4.1)

We can construct an efficient payoff vector v = vα,δ = vδ(fα,δ) ∈ R2, where fα,δ solves (4.1).

Since any such vα,δ solves the problem max{α · v | v ∈ V (δ, p1)}, the set of efficient payoff

vectors v that maximize payoffs given a direction α ∈ R2
++ is convex.

To characterize efficient decision rules, we introduce some notation. Let Σ1 = {σ1 : Θ →
A1} be a set of controls for player 1 and let Σ = Σ1 × A2. Let p ∈ ∆(Θ) be a belief about

player 1’s type given public information, and let p(θ) denote the θ-element of p. For σ ∈ Σ

and p ∈ ∆(Θ), we define the vector of expected period utility U(σ, p) ∈ R2 as

U1(σ, p) =
∑
θ∈Θ

u1(σ1(θ), σ2, θ) p(θ)

and U2(σ, p) =
∑

θ∈Θ u2(σ1(θ), σ2)p(θ). For α ∈ R2
++, we consider the ex-ante weighted sum

of period payoffs

Uα(σ, p) = α · U(σ, p) =
2∑
i=1

αi Ui(σ, p)

given a control profile σ ∈ Σ and beliefs p ∈ ∆(Θ). We also define the Bayes operator

B(· | σ1, p, a1) ∈ ∆(Θ) as

B(θ′ | σ1, p, a1) =
∑

{θ|σ1(θ|p)=a1}

P (θ′ | θ) p(θ)∑
{θ̂|σ1(θ̂)=a1} p(θ̂)

(4.2)

whenever σ1(θ̂) = a1 for some θ̂1 such that p(θ̂) > 0. We interpret B(θ′ | σ1, p, a1) as the

probability player 2 assigns to θt+1 = θ′ given that at the beginning of round t his belief

about θt was p, player 1 uses the control σ1 = σ1(θt), and player 2 observed player i’s action

at1 = a1.
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For α ∈ R2
++ consider the only solution to the dynamic programming problem

wα,δ(p) = max
σ∈Σ

{
(1− δ)Uα(σ, p) + δ

∑
a1∈A1

wα,δ
(
B(· | σ1, p, a1)

) ∑
θ∈Θ,σ1(θ)=a1

p(θ)

}
(4.3)

for all p ∈ ∆(Θi).
15 Similar to the analysis in Section 2, this equation captures how, given

beliefs p, a control determines current expected payoffs and continuation beliefs. Take σα,δ(· |
p) as the control profile attaining the maximum in (4.3) as a function of beliefs p. Any σ such

that σ(· | p)→ Σ, for p ∈ ∆(Θ), will be a (Markov) control rule. Using the control rule σα,δ,

we can construct a (non-randomized) decision rule f = fα,δ from σα,δ by setting

f t1(a1, . . . , at−1, θ1, . . . , θt, χ1, . . . , χt) = σα,δ1 (θt | pt)

and

f t2(a1, . . . , at−1, χ1, . . . , χt) = σα,δ2 (pt)

where pt is the belief that player 2 has about θt at the beginning of t. Observe that the

sequence (pt)t≥1 can be recursively computed as

pt+1(θ) = B(θ | σα,δ1 (· | pt), pt, at1) for t ≥ 1,

given the initial belief p1.

Lemma 4. Let α ∈ R2
++. The following hold:

a. The value of the maximization problem (4.1) is q(α) = wα,δ(λ).

b. The decision rule f = fα,δ constructed from σα,δ above is a solution to (4.1).

Like most of the literature in repeated games (Fudenberg and Maskin 1986, Athey and

Bagwell 2008, Hörner, Sugaya, Takahashi, and Vieille 2011), we will characterize equilibrium

behavior when players are patient. It will be useful to consider efficient decision rules and

payoffs as δ → 1. We define the differential discounted value function as

hα,δ(p) =
wα,δ(p)

1− δ
− wα,δ(p1)

1− δ
(4.4)

for any p ∈ ∆(Θ). Using this definition we can rewrite (4.3) as

hα,δ(p) + wα,δ(p1) = max
σ∈Σ

{
Uα(σ, p) + δ

∑
a1∈A1

hα,δ
(
B(· | σ1, p, a1)

)( ∑
θ∈Θ,σ1(θ)=a

p(θ)
)}

(4.5)

15The existence and uniqueness of the solution wα,δ follows from standard arguments, see Stokey and Lucas
(1989).
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Just to set ideas, assume that there exist subsequences (hα,δ
ν
)ν≥0 and (wα,δ

ν
)ν≥0 pointwise

converging to functions hα : ∆(Θ)→ R and wα : ∆(Θ)→ R. That is, hα(p) = limν→∞ h
α,δν (p)

and wα(p) = limν→∞w
α,δν (p) for all p. Therefore ρα = limν→∞w

α,δν (p1) does not depend

on p1. Taking the limit in equation (4.5), we deduce that the pair (h, ρ) = (hα, ρα) solves the

average reward optimality equation (AROE)

h(p) + ρ = max
σ∈Σ

{
uα(σ, p) +

∑
a1∈A1

h
(
B(· | σ1, p, a1)

)( ∑
θ∈Θ,σ1(θ)=a1

p(θ)
)}

(4.6)

for all p ∈ ∆(Θ). Let σα(· | p) ∈ Σ be the control profile attaining the maximum in the

dynamic programming problem (4.6) given p ∈ ∆(Θ).

The following result establishes the key properties connecting the discounted and undis-

counted dynamic programing problems.

Theorem 1 (Optimality Theorem). Fix α ∈ R2
++. The following hold:

a. The AROE (4.6) has a solution (hα, ρα) and a control rule σα that attains the optimum

in (4.6).

b. For any converging subsequence hα,δ
ν → h̄ as ν →∞ , we can take ρ = limν→∞w

α,δν (p1)

that does not depend on p1, and obtain a pair (h̄, ρ) that solves the AROE (4.6). The

function h̄ : ∆(Θ)→ R is convex.

c. For any decision rule f , lim supδ→1

∑2
i=1 αiv

δ
i (f) ≤ ρ = limν→∞w

α,δν (p1).

This result shows that studying (4.6) is useful to determine optimal payoffs and behavior

when players are patient. The first part ensures existence of solution. This is not obvious

since (4.6) does not define a contraction map. The second part shows that such solution can

be obtained by solving problems with discount factores that go to 1. The third part formally

establishes that the solution ρ ∈ R to (4.6) provides a tight upper bound for the value of the

discounted problem, as the discount factor goes to 1.

The AROE (4.6) is central to our analysis. The right-hand side of (4.6) captures the

trade-off that an optimal control σ solves as a function of current beliefs p ∈ ∆(Θ). An

optimal rule takes into account current period payoffs and the distribution over beliefs in the

subsequent round. Since the differential value h is convex in p ∈ ∆(Θ), more precise beliefs

always improve continuation payoffs. In particular, when rules that separate types maximize

current weighted payoffs, they also maximize total undiscounted weighted payoffs.

Proposition 1. Consider a belief p ∈ ∆(Θ) and a rule σ̄ = (σ̄1, σ̄2) with σ̄1 : Θ → A1 and

σ̄2 ∈ A2 such that for all θ 6= θ′, σ̄1(θ) 6= σ̄1(θ′) and

σ̄ ∈ arg max
σ∈Σ

Uα(σ, p).
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Then,

σ̄ ∈ arg max
σ∈Σ

{
Uα(σ, p) +

∑
a1∈A1

h
(
B(· | σ1, p, a1)

)( ∑
θ∈Θ,σ1(θ)=a1

p(θ)
)}
. (4.7)

Observe that the fully separating rule σ̄ in the Proposition need not be optimal for (4.7).

The benefit of a separating rule like σ̄ in (4.7) is that player 1 can use his private information

to maximize his own ex-post total payoffs, while the cost is that player 2’s payoff is maximized

when player 1’s behavior can be perfectly predicted.16 More generally, solutions to (4.6) will

involve a complex mix of trade-offs, and explicit formulas are in general unfeasible.17

4.2 Equilibrium Behavior

In this section, we investigate the conditions under which the undiscounted optimal dynamics

can be approximated by an equilibrium of our repeated game.

A control rule σ together with the initial beliefs p1 recursively determine a belief process

(pt)t≥1 by

pt+1 = B(· | σ, pt, at1) ∀t ≥ 1.

Given any control rule σ, the joint process (θt, pt)t≥1 is Markovian, with p1 and θ1 given.

Definition 1. A control rule σ determines a unique recurrence class if the process (θt, pt)t≥1

is a finite Markov chain having a unique recurrence class.18

This is arguably an important restriction over the Markov process (θt, pt)t≥1. On the one

hand, the path of the Markov chain (θt, pt)t≥1 could be countable. This case arises when the

rule pools all types along the path and the initial belief does not coincide with the stationary

distribution of P . Exploring the ergodicity properties of (θt, pt)t≥1 in hidden Markov models

is a question dating back to Blackwell (1951). Interesting recent developments exist, but they

do not apply to a model like ours in which the observation variable is endogenous.19

More generally, several results in the literature restrict attention to models in which ergod-

icity restrictions on state variables are (directly or indirectly) imposed (Dutta 1995, Hörner,

Sugaya, Takahashi, and Vieille 2011, Renault, Solan, and Vieille 2013). While checking

16The solution to the maximization problem maxσ∈Σ U2(σ, p) will typically be a pooling rule, in which player
2 can perfectly predict the action player 1 will employ.

17Problem (4.6) is similar to a bandit problem with Markovian hidden state (Keller and Rady 1999). Sepa-
rating rules maximize exploration. Propositions 1 and 3 show conditions under which the standard exploration
vs exploitation dilemma (Bergemann and Valimaki 2006) does not arise.

18In other words, a control rule determines a unique recurrence class it if there exists a finite set P ⊆ ∆(Θ)
such that (θt, pt)t≥1 ⊆ Θ×P and a unique subset P ′ ⊆ P such that for all (θ, p) ∈ Θ×P ′, if the Markov chain
visits (θ, p), then in the next period it will stay in P ′ with probability 1, and no proper subset of P ′ has this
property. See Stokey and Lucas (1989) for additional discussion.

19Recent results by Van Handel (2009) and Tong and Van Handel (2012) apply to models in which the
observation variable (the action in our case) is assumed to have full support. To adapt those results to our
setup one would need to restrict attention to perfectly mixed controls, which are suboptimal in our model.
While it is true that an optimal control rule can be approximated by perfectly mixed controls, the process of
beliefs would have an infinite support. Our proof for Theorem 2 cannot be extended to accommodate infinite
beliefs.
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whether an optimal rule determines a unique recurrence class Markov requires a characteri-

zation of solutions to (4.6), such exercise is easy to execute in many applications (see Section

5). In particular, the following result is useful in applications.

Proposition 2. Assume that the control rule σ is such that for any belief p ∈ ∆(Θ) having

positive probability in the path (θt, pt)t≥1, types are separated: σ(θ | p) 6= σ(θ′ | p) for all

θ 6= θ′. Then, σ determines a unique recurrence class.

This result follows since when types are separated, continuation beliefs come from the set

{P (· | θ) | θ ∈ Θ}. In this case, the support of the process (θt, pt)t≥1 is Θ× ({p1} ∪ {P (· | θ) |
θ ∈ Θ}) and its only recurrence class is Θ× {P (· | θ) | θ ∈ Θ}.

We will also consider rules where all types pool.

Definition 2. A control rule σ determines a pooling path of actions if there exists an action

a ∈ A such that

Pσ[σ(θt | pt) = a,∀t ≥ 1] = 1

Observe that for any control rule σ determining a unique recurrence class or a pooling

path of actions, the limit-average payoffs

v∞1 (σ) = lim
T→∞

1

T
E[

T∑
t=1

u1(σ(θt | pt), θt)], v∞2 (σ) = lim
T→∞

1

T
E[

T∑
t=1

u2(σ(θt | pt))]

are well defined. This is obvious if the rule is pooling. For a control rule σ determining a

unique recurrence path, this follows from Proposition 8.1.1 in Puterman (2005) after noticing

that the limits are average rewards from a stationary Markov decision rule over a finite state

Markov process. Letting π̄ = π̄σ ∈ ∆(Θ × P) be the stationary distribution for the Markov

chain (θt, pt)t≥1, given the control rule σ, with Θ × P the recurrence class of the chain, it

follows that

v∞1 (σ) =
∑

(θ,p)∈Θ×P

u1(σ(θ | p), θ)π̄(θ, p) and v∞2 (σ) =
∑

(θ,p)∈Θ×P

u2(σ(θ | p))π̄(θ, p)

We define v∞(σ) = (v∞i (σ))i=1,2.

The main purpose of this subsection is to find conditions under which payoffs generated

using different control rules can be attained. This is relatively simple when the control rule

determines a pooling path as in this case deviations are immediately observed. But the

problem is much more complicated for control rules in which player 1 is expected to use his

private information.

Fix a control rule σ determining a unique recurrence class Θ×P. Define mσ
1 (· | p) ∈ ∆(A1)

as the distribution over actions given a belief p ∈ P by

mσ
1 (a1 | p) =

∑
{θ∈Θ|a1=σ1(θ|p)}

p(θ)
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For a ∈ A and p ∈ P, we define mσ(a | p) analogously.

Given any sequence of actions a1
1, . . . , a

t
1 and a fixed control rule σ determining an irre-

ducible Markov chain, we can mechanically calculate probabilities p̄t+1 = B(· | σ1, p̄
t, at1) (if

this is not well defined, we set p̄t+1 to be an arbitrary element of the support of the process

of beliefs (pt)t≥1). These simulated probabilities need not coincide with the beliefs a Bayesian

agent would have about current types as player 1’s actions in the game could be derived from

an arbitrary strategy s1. We will sometimes emphasize the dependence of (p̄t)t≥1 on the con-

trol rule σ by writing (p̄t(σ))t≥1. For a control rule σ determining a unique recurrence class

with support Θ × P and given any history (at, θt, p̄t(σ))t≥1, we can compute the occupancy

rate of actions conditional on simulated probabilities as

m̄δ(a | p) =

∑∞
t=1 δ

t−1
1{at=a,p̄t=p}∑∞

t=1 δ
t−11{p̄t=p}

for each a ∈ A and p ∈ P.

We define the stationary minmax value as the smallest payoff a player can attain when

his rival chooses a fixed action and he chooses actions optimally. More formally,

v1 = min
a2∈A2

Eπ[ max
a1∈A1

u1(a, θ)], v2 = min
a1∈A1

max
a2∈A2

u2(a).

Our minmax definition does not yield the lowest payoff one could consider against a player

(Escobar and Toikka 2013, Hörner, Takahashi, and Vieille 2015), but it is simple to work with

and fully satisfactory in many applications. A vector v ∈ R2 is strictly individually rational

if vi > vi for i = 1, 2.

The following theorem shows that the optimality analysis performed in Section 4.1 is useful

to understand optimal equilibrium behavior.

Theorem 2 (Equilibrium Theorem). Let σα be a control rule solving (4.6) given weights

α ∈ R++, determining a unique recurrence class Θ × P, and resulting in a payoff vector

v = v∞(σα) ∈ R2. Assume

i. There exists control rules σ1, σ2 such that for each i either (a) σi determines a pooling

path of actions or (b) σi solves (4.6) given some weights αi ∈ R++ and determines a

unique recurrence class;

ii. All payoff vectors v, v1 ≡ v∞(σ1), v2 ≡ v∞(σ2) are strictly individually rational;

iii. vii < vi < v−ii , for i = 1, 2.

Then, for all ε > 0 there exists δ̄ < 1 such that for all δ > δ̄, the infinitely repeated game with

discount factor δ has a perfect Bayesian equilibrium s∗ = (s∗1, s
∗
2) ∈ E(δ, p1) such that

a. After all on-path histories, expected continuation values are within ε of v
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b. Ps∗
[

maxa∈A,p∈P |m̄δ(a | p)−mσα(a | p)| < ε
]
≥ 1− ε.

This result characterizes approximately optimal equilibrium behavior. It shows that pro-

vided players are patient enough, players’ incentives can be aligned to attain payoffs close to

v ∈ R2. Moreover, with sufficiently high probability, conditional on simulated beliefs, players

equilibrium actions will approximate the frequencies induced by the optimal rule σα. In other

words, given observed actions, equilibrium behavior cannot be distinguished from optimal

dynamics.20

The proof of Theorem 2 proceeds by constructing strategies in which player 2 forgives

but does not forget. To do that, we revisit the review strategy idea by Radner (1981) and

Townsend (1982) and build strategies in which player 2 keeps checking whether player 1’s

actions can be distinguished from the efficient rule σα1 . The details of our formulation are

closely related to the quota mechanisms in Jackson and Sonnenschein (2007), Renault, Solan,

and Vieille (2013), and particularly Escobar and Toikka (2013). One conceptual difference is

that in our model players cannot explicitly communicate and therefore we cannot formulate

the problem as a mechanism design one.

For a given sequence of actions (a1, . . . , at) ∈ At and (p, a1) ∈ P ×A1, define

N t(p) =
t∑

t′=1

1{p̄t′=p}, N t(p, a1) =
t∑

t′=1

1{(p̄t,at1)=(p,a1)}

and let

m̄t(a1 | p) =
N t(p, a1)

N t(p)
.

be the empirical frequency of player 1’s actions conditional on the simulated probability being

p̄t = p.

The first step is to introduce an artificial player, player 0, who decides player 2’s actions

(as a function of the history) and can also decide whether he lets player 1 to choose his

action or whether player 0 itself chooses player 1’s action at any given round. We will fix the

behavior of player 0 and analyze the incentives player 1 has when deciding actions. Player 0

can always “interpret” an action by player 1 through the control σα1 (· | p̄t) given the simulated

probability p̄t. Indeed, given a history of actions (a1, . . . , at), player 0 computes the simulated

probabilities p̄1 = p1 and recursively define p̄t+1(·) = B(· | σα1 , pt, at1). If at1 /∈ A1(p̄t), we

assign p̄t+1 = p0 where p0 ∈ P is arbitrary.

For any decreasing sequence (bk) converging to 0, we say that player 1 passes the test (bk)

given a history (a1, . . . , at) ∈ At if

max
a1∈A1

|m1(a1 | p)−mt
1(a1 | p)| ≤ bt

20In contrast to two-player repeated games with complete information, our result requires the existence of
player-specific punishments (Fudenberg and Maskin 1986). In our problem, types are hidden and for some
types the minmaxing action could actually yield high payoffs to the minmaxed player.
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for all p ∈ P. Given T ≥ 1, a rule σα and sequence (bk), the game of credible play (σα, (bk), T )

is constructed as follows. For t ≤ T , if player 1 has passed the test (bk) in all previous rounds

t′ = 1, . . . , t − 1, then he can freely select his action at1; otherwise, player 0 chooses at1 by

randomly drawing an action according to the distribution m(· | p̄t). We define the obedient

strategy for player 1 as ŝt1(θ1, . . . , θt, a1, . . . , at−1) = σα1 (θt | p̄t) whenever he is allowed to

choose actions. We will also define the block-game of credible player (σα, (bk), T )∞ as the

infinite horizon problem in which a game of credible play restarts after T rounds of play (with

discount factor δ).

Lemma 5. Let ε > 0.

a. There exists a test (bk) such that, for any initial belief p1 ∈ ∆(Θ)

Pŝ1 [Player 1 passes the test (bk) at (a1, . . . , at) for all t] ≥ 1− ε.

when player 1 uses the obedient strategy ŝ1.

b. There exists a test (bk) and δ̄ < 1 such that for all δ > δ̄ there exists T̄ such that for

all T ≥ T̄ , for any sequential best response s1 of Player 1 in the block-game of credible

play (σα, (bk), T )∞ given discount δ, the vector of discounted period payoffs vδ(s1) ∈ R2

is within distance ε of v. Moreover,

Ps1

[
max

a1∈A1,p∈P
|m̄δ(a1 | p)−mσα(a1 | p)| < ε

]
≥ 1− ε

To establish Theorem 2, we use this lemma to construct strategies delivering the de-

sired equilibrium payoffs vα. Strategies are of the stick-and-carrot type (Fudenberg and

Maskin 1986). On the path of play, players choose actions mimicking the path of play in the

equilibrium of the block-game of credible play from Lemma 5. Any observable deviation by i

triggers a punishment phase, in which player i is minmaxed by a number of rounds, and then

play proceed to a carrot phase in which players mimic the play of the game of credible play

yielding payoffs vi.

5 Games with Separating and Monotonic Dynamics

We now provide a characterization of solutions to (4.6). We assume that A1 and Θ are

contained in R and write A1 = {an | n = 1, . . . , |A1|} and Θ = {θm | m = 1, . . . , |Θ|} with

an < an+1 and θm < θm+1. We extend the payoff function for player 1, u1, to actions a1 ∈ R
and states θ ∈ Θ so that u1(a1, a2, θ) is twice continuously differentiable in (a1, θ) ∈ R× R.

Definition 3. We will say that u1 has strongly increasing differences in (a1, θ) if

min
{∂2u1(a1, a2, θ)

∂a1∂θ
| a1 ∈ R, a2 ∈ A2, θ ∈ R

}
> 0.
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The following result shows conditions under which the optimal control rule is strictly

increasing. Since actions are discrete, this property cannot be inferred by simply appealing

to strong increasing differences. There are two forces behind this result. Separating rules

(in particular, strictly increasing rules) make continuation beliefs more precise and therefore

maximize continuation payoffs (Proposition 1). This effect is reinforced when the action set

is rich because in this case the maximization of total period payoffs yield strictly increasing

rules.

Proposition 3. Assume that u1 has strongly increasing differences in (a1, θ). Let α ∈ R2
++

be such that

α1u1(a|A1|−1, a2, θ) + α2u2(a|A1|−1, a2) > α1u1(a|A1|, a2, θ) + α2u2(a|A1|, a2) (5.1)

and

α1u1(a1, a2, θ) + α2u2(a1, a2) < α1u1(a2, a2, θ) + α2u2(a2, a2) (5.2)

for all a2 ∈ A2 and all θ ∈ Θ and α1u1(a1, a2, θ) + α2u2(a1, a2) is concave in a1 ∈ R. Define

c1 = max
a1∈R,a2∈A2,θ∈R

(
− α1

∂2u1(a1, a2, θ)

∂a2
1

− α2
∂2u2(a1, a2)

∂a2
1

)
≥ 0

and

c2 = min
a1∈R,a2∈A2,θ∈R

∂2u1(a1, a2, θ)

∂a1∂θ
> 0.

Assume that
2c1

α1c2
max

n=1,...,|A1|−1
{an+1 − an} < min

m=1,...,|Θ|−1
{θm+1 − θm}. (5.3)

Then, any rule σα attaining the maximum in (4.6) is such that σα1 (θ | p) is strictly increasing

as a function of θ for all p ∈ ∆(Θ) with p(θ) > 0 for all θ ∈ Θ. Moreover, when the

transition matrix P is such that P (· | θ′) first order stochastically dominates P (· | θ) for all

θ′ ≥ θ, and u1(a, θ) and u2(a) are supermodular (in (a, θ) and a respectively), then σα(θ | p)
is nondecreasing in (θ, p), where P is endowed with the (partial) order given by first order

stochastic dominance.

Under the conditions above, the separating rule σα determines a unique ergodic class

therefore Theorem 2 can readily be applied. Some applications follow.

5.1 Collusion with Bertrand Competition

Tacit collusion is a prominent feature of many industries, as documented, for example, by Bres-

nahan (1987) for the American automobile market, and by Blume, Strand, and Färnstrand

(2002) for the European industrial sugar market. In this section, we study a model of tacit

collusion with Bertrand competition. Two firms set prices ai ∈ Ai at each t = 1, 2 . . . . Firms

sell heterogeneous goods, and each firm i faces a demand Qi(ai, aj) which is decreasing in ai

22



and increasing in aj . Firms have constant returns to scale. While firm 2’s costs are known

to equal c > 0, firm 1’s costs are private information θ ∈ {θ, θ̄}, with θ < θ̄. Players’ utility

functions take the form

u1(a1, a2, θ) = Q1(a1, a2)(a1 − θ)

and

u2(a1, a2) = Q2(a1, a2)(a2 − c).

where Qi(ai, a−i) = (1 − ai + za−i) with z ∈]0, 1[. We assume that types follow a Markov

chain P with P (θ′ | θ) > 0 for all θ′, θ ∈ {θ, θ̄}, with P (θ̄ | θ̄) > P (θ̄ | θ).
We can apply Proposition 3 to characterize the welfare maximizing control rule σα, for

α = (1, 1). Under the interiority restrictions (5.1)- (5.2), the welfare maximizing rule σα will

be separating provided max{an+1 − an} < 1
4(θ̄ − θ). Up to integer restrictions,

σα2 (p) =
1

2

{ 1

1 + z
(c− Ep[θ]) +

1

1− z

}
and

σα1 (θ | p) =
1

2

{
θ + 1 + 2zσα2 (p) + c

}
Under the optimal control rule σα, firm 1 signals his type by choosing a higher price when

his cost is high. When firm 1 chooses a high price in period t, then his cost is more likely

to be high in period t + 1 and player 2’s price is also higher. In this sense, a low price by

firm 1 in t triggers a price war in t + 1, in which firm 2’s price is low and firm 1’s prices are

also low. The severity of the price war (i.e. how low prices will be) will depend on the gap

θ̄ − θ and on how persistent the low cost state θ̄ is. The price war is over only once firm 1’s

price raises. Observe that σα is a rule determining a unique recurrence class and therefore

Theorem 2 applies.

As Marshall and Marx (2013) explain, during the period 2000-2005, the European Com-

mission classified 9 out of the 22 major industrial cartels as showing evidence of “of frequent

bargaining problems and deviations by cartel members, occurring throughout the cartel pe-

riod.”21 These “deviations” are also highlighted by Genesove and Mullin (2001) in the study

of the sugar cartel. In contrast to other theoretical papers, in our setup equilibrium price cuts

actually occur and apparent deviations can be seen as the result of firms using their private

information to maximize total profits and signaling their continuation play.22

Our model also explains collusive price leadership: the informed firm becomes a price

leader as whenever it raises its price in t, firm 2’s price will be higher in t + 1. Thus, our

model gives theoretical support to Stigler’s (1947) observation that price leadership may be

an efficient mechanism to transmit information, and to Markham’s (1951) view that firms

21See also Bernheim and Madsen (2014).
22Models of price dispersion could also be interpreted as generating equilibrium price cuts. See Bernheim and

Madsen (2014) for an application of this idea in a collusion context. Price cuts could also improve monitoring
in collusion models with imperfect public monitoring (Rahman 2014).
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may use “price leadership in lieu of an overt agreement.” Several papers document instances

of collusive price leadership. Allen (1976) shows evidence of collusive price leadership in the

market of steam turbine generators, and Marshall, Marx, and Raiff (2008) discuss evidence of

collusive price leadership in vitamins, rubber chemicals, sorbates, monochloroacetic acid and

organic peroxides, polyester staple, high-pressure laminates, amino acids, carbonless paper,

cartonboard, and graphite electrodes. Mouraviev and Rey (2011) show that price leadership

features in 16 out of 49 European Commission’s cartel decisions as of July 2010. Rotemberg

and Saloner (1990) also study collusion and price leadership in a Bertrand model with incom-

plete information. Their model exhibits iid private information and for price leadership to

emerge, within each round the informed firm must set its price before the uninformed one.

Such sequentiality is not needed in our model.

Our collusion model differs from the more standard analysis of Bertrand games with

inelastic demand and incomplete information about costs. In Athey and Bagwell (2001) firms

have iid private costs and, before choosing actions, can freely exchange messages. Athey

and Bagwell (2008) and Escobar and Toikka (2013) extend the model to allow for serially

dependent private costs. In all these works, firms can be arbitrarily close to the first best

collusive outcome, in which only the lowest cost firm produces and fixed the consumers’

reservation value. As Athey and Bagwell (2001) observe, communication can be dispensed

with as prices can be used to signal costs (at an arbitrarily low cost). But this observation

crucially depends on the assumption of inelastic demand. Our analysis shows that in more

general Bertrand games, firms are bounded away from a perfectly collusive outcome when

the exchange of messages is costly.23 More importantly, in the standard Bertrand models of

Athey and Bagwell (2001) and Escobar and Toikka (2013), the path of collusive prices cannot

be distinguished from the prices one would observe when firms’ information is symmetric (as

in Rotemberg and Saloner 1986). In contrast, our analysis not only shows that the costs of

incomplete information can be substantive for a cartel, but also that asymmetric information

has nontrivial implications for the dynamics of prices.24

5.2 Graduated Sanctions in Collective Action Games

Case studies show that punishments are not drastic but rather gradual. In many groups,

players “who violate operational rules are likely to be assessed graduated sanctions” (Ostrom

1990, p. 94) and are even given opportunities to make restitutions. As Dixit (2009) and

Abreu, Bernheim, and Dixit (2005) argue, this evidence contrasts with the more standard

theories of repeated games with perfect and imperfect monitoring (Abreu 1988, Green and

Porter 1984, Abreu, Pearce, and Stacchetti 1986, Abreu, Milgrom, and Pearce 1991). Our

set-up provides a rational for graduated sanctions in repeated games based on incomplete

23The results in Escobar and Toikka (2013) show that firms can attain perfectly collusive outcomes if they
communicate.

24Athey, Bagwell, and Sanchirico (2004) study a repeated Bertrand game with iid cost and show that optimal
equilibrium is in (on-path) pooling strategies when firms are restricted to use strongly symmetric strategies.
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information.25

We specialize our model to a repeated collective action game. At each t, players simul-

taneously choose actions ai ∈ Ai ⊆ R++. Player 1’s type θ belongs to a set Θ ⊂ R++. An

action is interpreted as a contribution to the team (or group), whereas player 1’s private type

determines how much player 1 benefits from the contributions. More concretely, we assume

that

u1(a, θ) = θa1a2 − a2
1 and u2(a, θ) = a1a2 − a2

2.

The terms −a2
i in the utility functions capture the costs of contributing, while θa1a2 and a1a2

are the benefits obtained by each player from the complementary contributions. The benefit

that player 1 obtains from the project is privately known. We assume that the transition

P (· | θ) first-order stochastically increases in θ.

Proposition 3 implies that, under the boundary restrictions and max{an+1 − an} ≤
4 min{a2 ∈ A2}min{θm+1 − θm}, the rule maximizing the sum of utilities σ∗ = (σ1(θ |
p), σ2(p)) is separating and increases in (θ, p). Given a belief p ∈ ∆(Θ), consider two actions

for player 1 ā1 > â1. the corresponding continuation beliefs are p̄ > p̂. This means that the

actions that player 2 will take are, respectively, ā2 > â2. More generally, conditional on pt,

the action chosen by player 2 in t+ 1 is strictly increasing as a function of the action chosen

by player 1 in t, at1. This means that the dynamics generated in our model of incomplete

information exhibit graduated sanctions (players always contribute positive amounts) that fit

the size of previous contributions. Player 1 also “makes restitutions” by taking higher actions

that positively affect player 2’s continuation beliefs and actions.

6 Equilibrium as Interactions Become Frequent

Our limit results, Theorems 1 and 2, apply when δ → 1. As Abreu, Milgrom, and Pearce

(1991) point out, the limit δ → 1 can be interpreted saying that either interest (discount) rates

are low or that players move frequently. In games with imperfect monitoring, Abreu, Milgrom,

and Pearce (1991) show that the two interpretations can lead to radically different results as

when moves become more frequent not only the interest rates change but also the quality of the

monitoring technology. In our perfect monitoring game of incomplete information, the impact

of more frequent moves is also subtle as types are more likely to remain unchanged between

two consecutive rounds. In this subsection, we explore these issues in a simple prisoners’

dilemma.

Two players choose actions at each t = D, 2D, . . . , where D > 0 is the period length. At

each t, players play a game as in Section 2, with the payoffs given in Table 1. Monitoring is

perfect, but only player 1 can observe θt ∈ {l, h} at the beginning of round t, with l < h. We

parameterize both the discount factor and the transitions by D. The discount factor equals

25Other theories that can explain graduated sanctions come from repeated extensive-form games (Mailath,
Nocke, and White 2004).
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δ = exp (−rD), where r > 0 is the discount rate per time unit. Transitions are given by

P[θt = l | θt−1 = l] = 1− φD

whereas

P[θt = h | θt−1 = h] = 1− χD

with φ, χ > 0. The initial type is drawn from a probability distribution such that P(θ1 =

l) = 1− φD.

We explicit the dependence of the transition matrix and the Bayes operator on D by

writing P = PD and B = BD. Under this parametrization we can interpret our findings in

Section 2 as taking the interest rate to 0 (r → 0). Our interest now is in the limit D → 0.

The formulation of the dynamic programming problem characterizing decision rules that

maximize the sum of payoffs for D > 0 can be imported from Sections 2 and 4. More explicitly,

given a belief p = P[θt = l], the value function for the problem of maximizing the sum of

payoffs is

wD(p) = max
σ∈Σ

{
(1− exp(−rD))U (1,1)(σ, p) (6.1)

+ exp(−rD)
∑

a1∈{I,N}

wD
(
BD(· | σ1, p, a1)

) ∑
θ,σ1(θ)=a1

p(θ)

}
.

The following result characterizes the solution to this problem when D is small.

Proposition 4. The following hold:

a. There exists D̄ > 0 such that for all D < D̄ and all p ∈ [χD, 1 − φD], the right-hand

side of (6.1) has a unique solution σ̄. Such solution is such that σ1(l | p) = I and

σ1(h | p) = NI. Moreover, wD(p)→ 2(a− l) χ
φ+χ as D → 0.

b. For all ε > 0, there exists D̂ ∈]0, D̄[ such that for D < D̂ we can find r̄(= r̄(D) such that

the game played every D units of time with discount rate r < r̄(D) has an equilibrium

attaining payoffs within distance ε of (a− l) χ
φ+χ(1, 1)′.

This result shows that a separating rule (resulting in reactive signaling dynamics) is op-

timal whenever the game is played frequently, and that the incentive costs are modest. Intu-

itively, when the game is played frequently, the costs of signaling a change of type is small (it

is incurred once) compared to the benefit of perfectly revealing information (which results in

almost perfect information for several rounds of interaction).26 This implies that as interac-

tions become more frequent, it becomes more likely that players can attain the full benefits

of cooperation without incurring significant signaling costs. Indeed, as shown in Section 2, if

26The costs of signaling are O(D) whereas the benefits are O(1).
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players can communicate average total payoffs equal 2(a−l) 1−µ
2−λ−µ which, as D → 0, converges

to 2(a− l) χ
φ+χ –the payoff attained in the game with frequent moves.

This proposition, together with Section 2, show that the effects of reducing the interest

rate toward zero are different from those of making the interactions more frequent. When

r → 0, the dynamics of cooperation can be time-off, whereas when D → 0 the dynamics

of cooperation are reactive signaling. This finding resonates well with those for games with

complete information but imperfect monitoring (Abreu, Milgrom, and Pearce 1991, Sannikov

and Skrzypacz 2007). While a related point is made in a mechanism design problem by

Skrzypacz and Toikka (forthcoming), we seem to be the first ones explicitly studying the

differences between low interest rates and frequent interactions in a repeated game model of

incomplete information.27

7 Conclusions

Oftentimes, economic agents in a long-run relationship can only partially know the conditions

under which their partners are making decisions. Moreover, communicating tough or favorable

conditions is difficult either because such protocols are non-existent or incomplete (Schelling

1960, Marschak and Radner 1972), or because those conditions materialize only after some

other player has already made a decision. We explore the design of optimal equilibria in this

type of environment, and show that the dynamics of cooperation are quite rich and novel,

and shed light on phenomena that were previously unexplained.

Our results help explain some of the dynamics commonly observed in cooperative relations.

First, we explain why economic agents sometimes find it optimal to forgive hostile or aggressive

conducts from other agents in a long-run relationship. Second, we explain why to forgive is

not to forget: most agents have a limit to the number of aggressions they are willing to

tolerate, and the cooperative relationship may end if that limit is surpassed. Third, we show

that restarting cooperation after an aggressive conduct has been observed may require costly

gestures from the infringing party, or that agents may have to spend a cooling-off period until

cooperation is sufficiently likely to be successful again. Our model shows that these behaviors

may arise as an efficient way of transmitting information about the likelihood of successful

cooperation. Finally, we show that incomplete information may have a significant effect on

welfare, even when players are very patient (i.e., have a large valuation for future payoffs), and

that in some cases, it may even preclude a cooperative relationship (i.e., cause the optimal

equilibrium to consist of constant repetitions of static Nash equilibria).

Our model also explains why firms sometimes engage in unilateral price changes, and gives

theoretical support to Stigler’s (1947) observation that price leadership may arise optimally

as a way to transmit information between competitors. Our model also explains the rationale

27In Skrzypacz and Toikka’s (forthcoming) model when trade is more frequent, the increase in the persistence
of the process of types is detrimental for incentives. In our model, the increase in the persistence of the process
helps as signaling a type has more benefits.

27



behind the commonly observed practice of graduated sanctions and restitutions in common-

pool resource settings (Ostrom 1990).

Some extensions to our model would be relatively simple to execute. We have worked with

a one-sided incomplete information game to emphasize the forces in the model, but extending

the results to allow for two-sided incomplete information entails no challenge.28 We could

also extend our results to allow for restricted communication or communication only once

the stage game has been played (but before the subsequent type is realized). It would also

be interesting to explore the equilibrium set when the discount factor is not arbitrarily close

to 1.29 The restriction to rules determining unique recurrence classes or pooling paths of

actions (Definitions 1 and 2) in Theorem 2 is harder to relax. These conditions are not

met when types are not revealed but some types still pool. Countable belief paths in which

all probabilities are visited only once but yet the informed player imperfectly reveals could

arise.30 Testing “appropriate behavior” therefore becomes hard under these conditions.31 The

same issue arises when we add imperfect public monitoring to our incomplete-information

game (Fudenberg, Levine, and Maskin 1994). Dealing with these extensions is left for future

research.

28Extending the dynamic programming formulation to a two-sided incomplete information model is imme-
diate. Escobar and Toikka (2013) and Renou and Tomala (2013) design protocols to handle incentives in
dynamic models of two-sided incomplete information. Those arguments can be readily applied to our setup
under ergodicity restrictions.

29Our dynamic programming characterization (4.3) still provides an upper bound for the equilibrium set.
Frankel (2015) studies “discounted quotas” and shows their optimality properties in mechanism design problem
with iid types and arbitrary patience.

30As we have shown, these paths cannot arise when the informed player has only two types, or when the
game has strictly monotonic dynamics (Section 5).

31Note that lumping beliefs into finitely many subsets is difficult to put to work as the Markov property is
lost.
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A Appendix

A.1 Proofs and Details for Section 2

Proof of Lemma 1. Convexity and continuity follow since w is the maximum of convex

and continuous functions. To see that w is nondecreasing, we prove that whenever w is

nondecreasing, so is the function

max {wIII(p), wNNN (p), wINI(p), wINN (p)} .

Observe first that wIII , wNNN and wINI are nondecreasing if w is nondecreasing. Write

wINN (p) = δ w(1− µ) + p
(
(1− δ) (2b− l) + δ w(λ)− δ w(1− µ)

)
and note that this function is nondecreasing whenever (1 − δ) (2b − l) + δ w(λ) − δ w(1 − µ)

is nonnegative. But if this last term is negative, then

wINN (p) ≤ δ w(1− µ) ≤ δ w(pλ+ (1− p)(1− µ)) = wNNN (p),

and therefore the maximization cannot be attained by the rule INN . It follows that

max{wIII(p), wNNN (p), wINI(p), wINN (p)} is nondecreasing.

Proof of Lemma 2. We begin by showing there exist p1 ∈
(
0, 1

2

)
, p2 ∈ (0, 1), and p3 ∈ [0, 1)

such that: (a) wINI < wINN for p < p1 and wINI > wINN for p > p1, (b) wINI < wNNN for

p < p2 and wINI > wNNN for p > p2, and (c) wNNN < wINN for p < p3 and wNNN > wINN

for p > p3. We will show how to obtain result (b). The other results are obtained in a similar

way.

Recall that:

wINI(p) = p ((1− δ) 2(a− l) + δ w(λ)) + (1− p) ((1− δ) (2b− l) + δ w(1− µ)),

wNNN (p) = δ w(p λ+ (1− p)(1− µ)).

It is straightforward to see that wINI(0) < wNNN (0) and wINI(1) > wNNN (1). Also, wINI(p)

is linear and wNNN (p) is convex (given that w(p) is convex). Thus, the two functions intersect

exactly once. Thus, there exists p2 ∈ (0, 1) such that wINI > wNNN for p > p2 and wINI <

wNNN for p < p2.

If joint investment is ever to take place, then wINI(λ) ≥ max{wNNN (λ), wINN (λ)}. A

sufficient condition for wINI(λ) > wINN (λ) is λ ≥ 1
2 . By convexity,

w(p λ+ (1− p)(1− µ)) ≤ pw(λ) + (1− p)V (1− µ).

Thus, if λ 2 (a − l) + (1 − λ) (2b − l) > 0, then wINI(p) > wNNN (p). A sufficient condition
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is λ ≥ l−2b
2(a−b)−l . Thus, if λ ≥ max

{
1
2 ,

l−2b
2(a−b)−l

}
, the optimal rule dictates play of INI when

beliefs are p = λ.

Now suppose that current play is at INI, and player 1 plays N . Next period, beliefs

change to p = 1 − µ. Optimal play at p = 1 − µ depends on the comparison between wINI ,

wINN , and wNNN . There are three cases.

First, if p1 < 1 − µ and p2 < 1 − µ, then the optimal play at p = 1 − µ is INI and the

optimal rule is to play INI for any belief p. This is a particular case of time off in which

τ̂ = 0.

Second, if 1 − µ < p2 and 1 − µ < p3, then the optimal play at p = 1 − µ is INN . In

this case, player 1 plays I if her type is l and plays N if her type is h. Next period, beliefs

change to either λ or 1− µ, and optimal play is either INI or INN . Thus, the optimal rule

is reactive signaling.

Third, if p3 < 1− µ < p2, then the optimal play at p = 1− µ is NNN . Player 1’s action

does not reveal her type. Next period, beliefs are updated to p′ = (1 − µ)λ + µ (1 − λ). If

p′ < p2, play continues at NNN . Play continues at NNN until P(θt = l) > p2, in which case

play switches to INI. Thus, the optimal rule is time off with τ̂ > 0. Note that if p2 >
1−µ

2−λ−µ ,

then play will not switch back to INI and the optimal play will be NNN forever. A sufficient

condition for p2 <
1−µ

2−λ−µ is 1−µ
1−λ >

l−2b
2(a−l) .

We now extend Lemma 2 to provide a complete characterization of optimal dynamics in

the undiscounted case. Let βTO = 1−µ
(1−λ) (2−λ−µ) and βRS = λ

2(1−λ) .

Lemma 6. Suppose δ → 1. Reactive signaling leads to positive welfare if and only if β < βRS,

and time off leads to positive welfare if and only if β < βTO. Optimal cooperation dynamics

depend on parameters as follows: (1) if βTO ≤ βRS, there exists a threshold β0 < βTO such

that time off is better than reactive signaling for β < β0 and reactive signaling is better than

time off for β0 < β < βRS, and (2) if βTO > βRS, then either (a) there exist thresholds β1

and β2, with β1 < β2 < βRS, such that time off is better than reactive signaling for β < β1

and β2 < β < βTO, and reactive signaling is better than time off for β1 < β < β2, or (b) time

off is better than reactive signaling for all β < βTO.

Lemma 6 shows there exist three different cases for optimal dynamics as a function of β.

Figures 3a, 3b, and 3c present examples of the three cases for different parameter combina-

tions.

Lemma 6 and Figures 3a, 3b, and 3c show that time off leads to higher welfare than

reactive signaling in two cases. First, if the cost of miscoordination is small relative to the

opportunity cost of missed cooperation (β is small), then the optimal waiting period τ∗ is

small. In this case, it is optimal to try to coordinate in joint investment as soon as possible,

instead of waiting until player 1 signals her type. Second, if the cost of miscoordination is

large relative to the opportunity cost of missed cooperation (β is large) and βTO > βRS ,

players want to avoid the cost of miscoordination if possible. If the stationary probability of
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(a) λ = 0.85, µ = 0.9 (b) λ = 0.85, µ = 0.85

(c) λ = 0.85, µ = 0.7

Figure 3: Welfare comparisons

θ = l is large enough, players can avoid this cost by waiting for a long time before trying

to cooperate again. In formal terms, if βTO > βRS and β is close to βTO, then the optimal

waiting period τ∗ is large (τ∗ →∞ as β → βTO) but time off is better than reactive signaling.

Proof of Lemma 6. At time 0, the expected values of the RS and TO rules when δ → 1

are:

wRS =
(1− µ) (λ− 2 β (1− λ))

2− λ− µ
,

wTO =
P (τ)− β (1− λ)

(τ + 1)(1− λ) + P (τ)
,

where

P (τ) =
(1− µ)

(
1− (λ+ µ− 1)τ+1

)
2− λ− µ

is the probability that θt+τ+1 = l, given that θt = h. See Appendix B for details on how to

obtain these expressions.
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We begin by showing that τ̂ (the optimal length of the waiting phase in TO) is nonde-

creasing in β. The second derivative of wTO with respect to T and β is

∂2wTO
∂τ ∂β

=
(1− λ)

(
(1− λ) +

(
1− P (τ)

)
log(λ+ µ− 1)

)(
(τ + 1)(1− λ) + P (τ)

)2 ,

which is positive. Therefore, τ̂ is nondecreasing in β.

We now show that value decreases with β for both RS and TO. The derivatives of wRS

and wTO with respect to β are:

∂wRS
∂β

= −2 (1− λ) (1− µ)

2− λ− µ
,

wTO
∂β

= − 1− λ
(τ + 1)(1− λ) + P (τ)

.

Notice also that the derivative of wRS is constant with respect to β, but the derivative of

wTO is nondecreasing in β (that is, it decreases in absolute value as β increases), because τ̂

is nondecreasing in β. This means that wRS is linear and wTO is convex with respect to β.

It is easy to see that for β sufficiently large, both wRS and wTO are negative, thus RS and

TO are dominated by a pooling rule in which players never invest. In particular, wRS > 0 iff

β < βRS and wTO > 0 iff β < βTO, where βRS = λ
2 (1−λ) , and βTO = 1−µ

(1−λ) (2−λ−µ) .

Now we proceed to compare RS and TO. First, note that for RS to be optimal, wRS ≥ wTO
when T = 0 (if RS is worse than TO when T = 0, then it is also worse at the optimal τ̂).

This implies that a necessary condition for RS to be optimal is that β ≥ 1−µ
2µ−1 . Thus, TO

dominates RS for small β.

Suppose that βTO < βRS . Given continuity of wTO and wRS with respect to β, and the

convexity of wTO, there exists exactly one point in which the two lines cross. Thus, there

exists a threshold β0 < βTO such that TO dominates RS for β < β0 and RS dominates TO

for β0 < β < βRS .

Finally, suppose that βTO > βRS . Given continuity of wTO and wRS with respect to β,

and the convexity of wTO, we know that close to βTO (i.e., for large β) TO must dominate

RS. There are two cases: (a) wRS may be above wTO for intermediate values of β, or (b) wRS

may lie below wTO for all β.

A.2 Proofs for Section4.1

Proof for Lemma 4. The result is the standard dynamic programming formulation of par-

tially observed Markov decision processes (Arapostathis, Borkar, Fernández-Gaucherand,

Ghosh, and Marcus 1993). A minor subtlety arises due to the fact that our control vari-

ables are mixed strategies which, in contrast to what is typically addressed in the literature,

involve private randomizations. To address this, note that a decision rule can be equiva-

lently written as f = (f ti ) with f ti : At−1 × Θt
i × [0, 1]t × [0, 1] → Ai, where the last com-
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ponent of an element in the range only determines the action of player i. In other words,

ati = f ti (a
1, . . . , at−1, θ1

i , . . . , θ
t
i , χ

1, . . . , χt, χti) where χti is only used by i. We can expand the

set over which the maximization (4.1) is performed by allowing rules where all players at t

condition on the whole vector (χt1, . . . , χ
t
N ). This relaxed efficiency problem admits a dynamic

programming formulation in which, without loss, public randomizations are not used. Since

the solution of the relaxed problem is feasible for (4.1), we deduce that q(α) = wα,δ(λ).

Proof of Theorem 1. We use the so-called vanishing discount approach. Parts a. and b. follow

from Platzman (1980) or Theorem 11 in Hsu, Chuang, and Arapostathis (2006). It is enough

to note that the hidden Markov process (θt)t≥1 has full support and note that, for example,

Assumption 2 in Hsu, Chuang, and Arapostathis (2006) holds. To deduce c, we use part (d)

Corollay on p.369 in Platzman (1980).

Proof of Proposition 1. Consider the problem

max
σ∈Σ

∑
a1∈A1

h(B(· | σ1, p, a1))
∑

θ∈Θ,σ1(θ)=a1

p(θ)

with h : ∆(Θ) → R convex. The solution is any separating rule (in particular, σ̄(· | p̄) in

the text solves this problem). To see this, notice that the problem can be reformulated as

the problem of choosing a Bayes-consistent belief distribution over beliefs with the purpose

of maximizing a convex function (Gentzkow and Kamenica 2011). The value of that problem

equals the concave hull of the objective and is attained by a distribution putting appropriate

weights over delta-Dirac beliefs.

A.3 Proofs for Section 4.2

Proof of Lemma 5. Let us first prove a. Since the control rule σα determines an irreducible

Markov chain (Definition 1), there exists an irreducible transition matrix P̄ for the joint

process of states and beliefs, (θt, pt)t≥1 ∈ Θ × P and a unique stationary distribution π̄ on

Θ×P . Using Blackwell’s (1957) construction, we can extend the Markov chain (θt, at) to the

negative numbers t ∈ Z, and compute the invariant measure π̄(θ, p) = P{θ0 = θ,P[θ0 = · |
(at)t≤0] = p(·)}. In particular, for any (θ, p) ∈ Θ× P ,

π̄(θ | p) = P
[
θ0 = θ | p = P[θ0 = · | (at)t≤0]

]
= p(θ). (A.1)

Now, for any sequence (θt, pt)t≥1, we define the empirical transition matrix P̄ t on Θ× P
as

P̄ t
(
(θ′, p′) | (θ, p)

)
=
|{t′ ≤ t− 1 | (θt′ , pt′) = (θ, p), (θt′+1, pt′+1) = (θ′, p′)}|

|{t′ ≤ t− 1 | (θt′ , pt′) = (θ, p)}|
.
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and the empirical measures

π̄t(θ, p) =
1

t

t∑
t′=1

1(θt′ ,pt′ )=(θ,p)

and

π̄t(p) =
∑
θ∈Θ

π̄t(θ, p) =
1

t

t∑
t′=1

1pt=p.

Finally, define

N t(θ, p) =

t∑
t′=1

1(θt′ ,pt′ )=(θ,p)

for (θ, p) ∈ Θ× P .

Our first observation is that there exists a constant c1 > 0 (depending on P̄ and π̄) such

that for any t ≥ 1 and an empirical transition matrix P̄ t on Θ× P sufficiently close to P̄ ,

‖π̄t − π̄‖ ≤ c1‖P̄ t − P̄‖+ c1
1

t

where ‖·‖ is the supreme norm. To see this inequality, we borrow the following two formulas

from Lemma B.2 in Escobar and Toikka (2013)

π̄t =
(
I − P̄ t + E

)−1
(1+ et), π̄ =

(
I − P̄ + E

)−1
1

where ‖et‖ ≤ |Θ||P |t and note that the map P̄ ′ 7→
(
I−P̄ ′+E

)−1
is Lipschitz in a neighborhood

of P̄ . Moreover, since π̄(θ, p) > 0 for all θ ∈ Θ and all p ∈ P , without loss we can take c1

such that

‖ π̄
t(θ, p)

π̄t(p)
− π̄(θ | p)‖ ≤ c1‖P̄ t − P̄‖+ c1

1

t

for all (θ, p) ∈ Θ× P . Combining this observation with (A.1) we deduce that for all p ∈ P

‖π̄t(· | p)− p(·)‖ ≤ c1‖P̄ t − P̄‖+ c1
1

t
(A.2)

Now, ignore the moves of player 0 and assume that player 1’s actions are never modified.

Use Lemma B.1 in Escobar and Toikka (2013) to show that there exists a decreasing sequence

(dk)k converging to 0 such that

Pŝ1 [‖P̄ t(· | (p, θ))− P̄ (· | (p, θ))‖ < dNt(p,θ) ∀t ≥ 1,∀(θ, p)] ≥ 1− ε

2
. (A.3)

Fix 0 < ψ < minθ,p π̄(θ, p) and use Theorem 1.10.2 in Norris (1997) to find t̄ such that

Pŝ1 [N t(p, θ) ≥ t(π̄(θ, p)− ψ), ∀t ≥ t̄] ≥ 1− ε

2
. (A.4)
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Define c2 = minθ,p π̄(θ, p)(> 0) and the sequence (bk)k by bk = c1|Θ|
(
dk(c2−ψ) + 1

k

)
for all

k ≥ t̄ (for k < t̄, bk = 2). From (A.2), (A.3), and (A.4)

Pŝ1 [‖π̄t(· | p)− p(·)‖ ≤ 1

|Θ|
bt ∀t ≥ 1, p ∈ P ] ≥ 1− ε.

Note that for any element of the event above, player 1 passes the test (bk) because

max
a1∈A1

‖mt(a1 | p)−m(a1 | p)‖ ≤ |Θ|‖π̄t(· | p)− π̄(· | p)‖ ≤ bt

and therefore

P[1 passes test (bk) at (a1, . . . , at), ∀t] ≥ 1− ε.

It follows that we introduce the possibility that player 0 changes player 1’s actions after failing

a test, the lower bound for the probability above remains unaltered.

We now prove b. Construct the test (bk) from part a given ε. Observe that player 1 can

always use the obedient strategy ŝ1 in a game of credible play, and therefore his average payoff

is at least vα1 − ε. Now, there exists T̄ ≥ 1 such that for any T ≥ T̄ , and any strategy s1 for

player 1 in the credible reporting game (σα, (bk), T ),

Ps1 [‖mT (· | p)−m(· | p)‖ ≤ ε, ∀p ∈ P ] ≥ 1− ε.

This observation follows by noticing that regardless of the strategy s1 used by 1, if at any

given round player 1 fails the test, the continuation actions are drawn from m(· | p) (see

Lemma B.5 in Escobar and Toikka (2013)). Therefore, with sufficiently high probability, for

any strategy s1, Player 1 passes a relaxed test at the end of the block given the history of

actions (a1, . . . , aT ). In particular, the expected average payoff for player 2 over the course of

a game of credible play is within ε of vα2 . It therefore follows that for all ε > 0, for any best

response s1 for player 1 in the game of credible play (σα, (bk), T ), with T ≥ T̄ , Player 1 payoff

is at least vα1 − ε and player 2’s payoff is within ε of vα2 . Introducing discounting and putting

the games of credible play back-to-back to form a block-game of credible play, we deduce that

for any best response s1 = sδ1 of player 1 in (σα, (bk), T )∞, for δ ≥ δ(T ),

vδ1(s1) ≥ vα1 − ε

and ‖vδ2(s1)− vα2 ‖ ≤ ε. Now, extend Corollary 1 in Platzman (1980) to deduce that32

lim sup
δ→1

α · vδ(sδ) ≤ ρα.

We deduce that limδ→1 α · vδ = ρα = α · vα. The result follows.

32The extension is due to the fact that we need convergence uniformly across strategies, but the very same
proof by Platzman (1980) works in our setup.
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Proof of Theorem 2. Equilibrium strategies can be described as follows. Players start in a

cooperative phase by choosing actions as in the equilibrium of the games of credible play

(σα, (bk), T )∞. Any observable deviation by player i triggers a stick phase in which the

players play minmax against i during L periods. Any deviation by a player restart a minmax

phase of L rounds against that player. After the L rounds of minmax against i, a carrot phase

is started in which players choose actions as in the equilibrium of the game of credible play

(σα
i
, (bk), T )∞. Deviations restart the minmax phase and so on.

Let ε > 0 be small enough such that for some γ ∈]0, 1[

vα
−i

i − vαii > 2ε, (1− γ) >
2ε

vα
i

i − vi
, γ

(
vα
−i

i − vαii − 2ε
)
> (1− γ)

(
vi −m+ ε

)
for i = 1, 2. Take δ̄ < 1 such that for all δ > δ̄ the credible reporting games (σα

′
, (bk), T )∞,

for α′ = α, α1, α2, have discounted equilibrium payoffs Uα
′
(δ) within distance ε of the target

payoffs vα
′
. Define the length of the stick phase as L(δ) = max{d ∈ N | d ≤ ln(γ)

ln(δ)} and

note that δL → γ. Lemma 6.1 in Escobar and Toikka (2013) shows that discounted payoffs

during the L periods of the stick phase against i are bounded above by (1− δL)(vi + ε) for δ

sufficiently large.

Now, consider the incentives in the carrot phase

vαi − ε ≥ (1− δ)M + (δ − δL+1)(vi + ε) + δL+1(vα
i

i + ε)

The incentives of player i in the stick phase against j 6= i can be written

(1− δL)m+ δL(vα
j

i − ε) ≥ (1− δ)M + (δ − δL+1)(vi + ε) + δL+1(vα
i

i + ε)

Finally, the incentives of player i in the carrot phase against j can be written as

vα
j

i − ε ≥ (1− δ)M + (δ − δL+1)(vi + ε) + δL+1(vα
i

i + ε)

Taking the limit as δ → 1 in all these inequalities, by construction of ε and γ, we deduce the

existence of a critical discount factor such that all incentive constraints hold.

A.4 Proofs for Section 5

Proof of Proposition 3. Consider first a solution σ∗ ∈ Σ to the problem

max
σ∈Σ

∑
θ∈Θ

(
α1u1(σ1(θ), σ2, θ) + α2u2(σ1(θ), σ2)

)
p(θ)

Since p(θ) > 0 for all θ,

σ∗1(θ) ∈ arg max
a1∈A1

{
α1u1(a1, σ

∗
2, θ) + α2u2(a1, σ

∗
2)
}
.
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Fix θm ∈ Θ with m < |Θ| and an = σ∗1(θ) with 2 ≤ n ≤ |A1| − 1. By concavity, the derivative

∂

∂a1

(
α1u1 + α2u2

)
(an−1, σ∗2, θ

m)

is nonnegative. Now,

∂

∂a1

(
α1u1 + α2u2

)
(an+1, σ∗2, θ

m+1) =
∂

∂a1

(
α1u1 + α2u2

)
(an−1, σ∗2, θ

m)

+

∫ an+1

an−1

∂2

∂a2
1

(
α1u1 + α2u2

)
(y, σ∗2, θ

m)dy + α1

∫ θm+1

θm

∂2

∂a1∂θ
u1(an−1, σ∗2, y)dy

≥ |an+1 − an|(−c1) + α1c2(θm+1 − θm)

is positive under (5.3). It follows that σ∗1(θm+1 | p) ≥ an+1 > σ∗1(θm | p).
To deduce the second part of the Proposition, use the results in Van Zandt and Vives

(2007) for monotone comparative statics in Bayesian games.

A.5 A Proof for Section 6

Proof of Proposition 4. Lemma 2 shows that the optimal equilibrium follows either reactive-

signaling or time-off dynamics. The limit of the value of playing reactive-signaling when

D → 0 is

lim
D→0

wRS = 2 (a− l) χ

φ+ χ
.

The limit of the value of playing time-off for a given τ when D → 0 is

lim
D→0

wTO(τ) =
χ (τ + 1) 2 (a− l) + φ (2b− l)

(φ+ χ) (τ + 1)
,

and the derivative of this expression with respect to τ is

− φ (2b− l)
(φ+ χ) (τ + 1)2

> 0,

Thus, as D → 0, τ̂ →∞, and limit of the value of playing time-off when D → 0 is

lim
D→0

wTO = 2 (a− l) χ

φ+ χ
,

which is equal to the limit value of playing reactive signaling. This result is very intuitive.

As D → 0, the process of types becomes perfectly persistent, and the probability of a type

change is equal to 0. In the first period of play, the probability that player 1 has low cost is

χ/(φ+ χ). Thus, the value of playing either reactive signaling or time off is 2 (a− l) χ
φ+χ .

In order to compare the two rules, we compare the derivatives of the limit value with
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respect to D, as D → 0 from the right. For reactive signaling, we have

lim
D→0

∂wRS
∂D

= (−χ (a− l) + (2χ+ r) (2b− l)) χ

φ+ χ
,

and for time off, we have

lim
D→0

∂wTO
∂D

= −∞.

Both derivatives are negative, but the derivative corresponding to time off is larger in absolute

value. Thus, to the left of D = 0, reactive signaling has greater value than time off. This

proves part a of the proposition.

To prove b, we follow steps close to those in the proof of Theorem 2. The definition of

game of credible reporting remains unaltered for any given D. We will prove that for a proper

choice of parameters, we can replicate Lemma 5. We construct the sequence bk from the

definition of dk (see proof of Lemma 5) by picking 0 < ψ < limD→0 π̄
D(θ, p), with π̄D the

stationary distribution given D, and bk = c1|Θ|(dk(c2−ψ) + 1
k ). Conditions (A.2) and (A.3)

follow immediately for any D. Condition (A.4) is also immediate, just notice that the choice

of t̄ depends on D so t̄ = t̄(D). This completes the first part of Lemma 5. To see the second

part, construct T̄ = T̄ (D)(> t̄(D)) so that for any strategy s1 P
D
s1 [‖mT (· | p)−mD(· | p)‖ ≤

ε ∀p ∈ PD] ≥ 1 − ε. Note that for the game of credible play (σ̄, (bDk ), T ), with T ≥ T̄ (D),

Player 1 can obtain a payoff at least (a − l) χ
φ+χ − ε. By construction, Player 2’s payoff is

within ε of (a − l) χ
φ+χ . Fixing τ , T ≥ T̄ (D), we can find r̄(D) such that for all r < r̄(D),

for any best response s1 in the block-game of credible play, Player 1 obtains a payoff at

least (a− l) χ
φ+χ − ε. Taking D ≤ D̄ and r ≤ r̄(D) (sufficiently small if needed), by definition

equilibrium payoffs in the game played every D units of time with discount rate r are bounded

above by 2(a − l) χ
φ+χ + ε. Observable deviations from the path of play of the block-credible

reporting game are punished by Nash reversion. Provided r̄(D) is chosen sufficiently small,

the result follows.
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