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Abstract

Learning is crucial to organizational decision making but often needs be

delegated. We examine a dynamic delegation problem where a principal decides

on a project with uncertain pro�tability. A biased agent, who is initially as

uninformed as the principal, privately learns the pro�tability over time and

communicates to the principal. We formulate learning delegation as a dynamic

mechanism design problem and characterize the optimal delegation scheme.

We show that private learning gives rise to the tradeo� between how much

information to acquire and how promptly it is re�ected in the decision. We

discuss implications on learning delegation for distinct organizations.
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1 Introduction

Suppose that two people need to decide whether to invest in a project. If they invest,

they could receive a gain or su�er a loss. If they do not invest, they wait, obtain

new information, and may invest in the future. Now suppose that one of them, the

principal, prefers to learn, while the other, the agent, prefers to invest. If learning has

to be delegated to the agent and the principal cannot observe the learning outcome,

can the agent convey it truthfully? If so, what should be the optimal delegation

scheme? How does it change over time given what the agent has learned so far? How

long should learning take place?

Delegating learning is a common occurrence. For example, suppose the board of

directors of a company is deliberating whether to acquire another company. Apart

from the �nancial value of the acquisition, its strategic value�e.g., its impact on the

price and competition, the current employees, the bargaining power with suppliers�

is also relevant. Since much of this information is hard to observe directly, the board

needs to rely on learning by the manager, who has direct access to the parties in-

volved. For another example, the Food and Drug Administration (FDA) relies on

pharmaceutical companies to develop drugs and test their e�cacy. Although the

companies are required to submit clinical trial results, the trials themselves cannot

be fully monitored, and therefore the results can be manipulated.1

We study how a principal should delegate an investment decision to an agent who

privately learns about the investment over time. Our analysis extends the traditional

static delegation approach (Holmstrom (1984); Melumad and Shibano (1991); Alonso

and Matouschek (2008); Amador and Bagwell (2013)) to allow for evolving private

information. We formulate delegation as a dynamic mechanism design problem and

characterize its solution. Our results shed light on how organizations could incentivize

learning and informative communication with an evolving delegation scheme and why

distinct organizations should implement distinct learning delegation procedures.

In our model, a principal and an agent face a project that never expires. The

project's quality, which can be good or bad, is initially uncertain. Players share the

same belief about the project's quality. The principal needs to decide when, if ever,

to invest in the project. The project generates a signal whose arrival time is random.

1Several authors have documented frauds in clinical trials (George and Buyse, 2015). Seife (2015)
shows that the FDA has found substantive evidence of fraudulent data in biomedical research on
humans. For a summary, see Seife, �Are your medications safe,� Slate, February 9, 2015.
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As long as no investment has happened, the agent privately observes the signal, or

the absence thereof, without cost. Hence, investing and learning are two sides of the

same coin in that as long as investment has not happened, learning continues. A

signal perfectly reveals the project quality. At each point in time before investment

happens, the agent sends a cheap talk message about the information learned so far

to the principal. The principal commits to a delegation rule that speci�es, for each

point in time and each possible message history at that time, whether to invest or

not. Once the investment happens, the game ends.

No one receives a payo� if no investment has happened. Once the investment

happens, each player receives a time-discounted payo� determined by project quality

and the player's identity. A good investment brings gains to both players, while a

bad investment brings losses to both players. Consequently, each player will want to

invest if they are optimistic enough about project quality and will want to wait for

more information otherwise. However, the common initial belief is high enough for

the agent such that he prefers to invest immediately and low enough for the principal

such that she prefers to wait and invest only when a good signal arrives. The challenge

for the principal is then to incentivize the agent to tell the truth when he has not

received any signal, while trying to invest as soon as possible after a good signal

arrives.

First, we note that investment must follow a good signal with delay. If a good

signal triggers immediate investment, the agent would like to pretend to be informed

when in fact no signal has arrived, and no learning would take place. To see how

the delay should evolve over time to incentivize learning, we need to understand the

driving forces behind learning. Learning bene�ts the agent because if a bad signal

arrives, he would then learn that the project is bad and avoid the loss from investing.

On the other hand, learning costs the agent in that it takes time. Suppose that

no signal has arrived and the agent is still optimistic enough to prefer to invest right

away. At this point, the cost of learning outweighs the bene�t. To encourage learning,

the principal needs to decrease the cost by making investment respond faster to the

good signal throughout time. Suppose that the principal wants to encourage the

agent to learn for one more day. If a claim of good signal leads the principal to invest

immediately, then the cost of learning is one day's delay. However, if a good signal

that arrives today leads to investment 5 days later while a good signal that arrives

tomorrow leads to investment 4.5 days after tomorrow, the cost of learning is only a
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half-day's delay. Delays in investment that decrease in the arrival times of the good

signal allow the principal to balance the cost and bene�t of learning for the agent,

hence his truthful revelation.

It is natural to think that if no good signal has arrived, investment should not

happen. This is not always the case. In fact, as a result of the trade-o� between

the amount of information acquired and how e�ectively it is used, the principal may

prefer to invest at a deadline even if no good signal has been claimed. Suppose that

at some time T , even if no signal has arrived, learning stops and investment happens.

Since no incentives for learning is required from T on, the delay decreases gradually

to 0 at T . If instead the principal decides to incentivize learning after T , the delay at

T must be positive. Accordingly, delays of investment for claims of the good signal at

each time before T must also be increased. Therefore, the longer learning takes place,

the better information the principal receives, the more accurate but less prompt her

decision to invest is. If no investment happens unless a good signal arrives, learning

could take place for an arbitrarily long period of time. Consequently, the decision to

invest is 100% accurate because the principal only invests if she is completely sure

that the project is good. However the downside is that she has to provide incentives

for learning for a long time. The resulting long delays in investment when a good

signal arrives can therefore be a prohibitive cost for the principal.

Our results have implications on learning delegation in organizations. First, al-

though delays in FDA's approval process are much criticized,2 we show that they

have a key role in ensuring truthful revelation by the pharmaceutical companies. Sec-

ond, our results speak to how distinct organizations should use distinct protocols to

delegate learning. With drug approval, the loss from approving a damaging drug is

substantial. FDA's optimal action is then to be prudent by establishing long revision

processes so that a damaging drug will never get approved, despite the resulting delay.

In contrast, if a manager's career concern is strong and he has a high gain-loss ratio,

the optimal action for the board when it comes to acquisition decisions is to set short

learning phases and then acquire as long as no negative news has arrived.

Our results are robust to a number of variations of the environment. First, we

allow the principal to use random mechanisms. We show that as long as the principal

2See for example: Robert Pear, �Fast approval of AIDS drugs is urged,� New York Times, August
16, 1990 and Daniel B. Klein, �Economists against the FDA,� Independent Institute, September 1,
2000.
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is at least as patient as the agent, the optimal deterministic mechanism remains so

even when randomizations are allowed. Next, we allow the principal to use time-

dependent transfers that are paid after a good signal is revealed. We show that

the principal should use delays instead of transfers to motivate the agent. Again,

the optimal contract from our baseline model remains unaltered when more general

mechanisms are allowed. Lastly, we explore a model in which the agent needs to incur

an unveri�able cost to acquire information. The unveri�able learning cost makes the

incentive problem much more severe as the agent may not only lie but also shirk.

In this general environment, a contract with delays and deadlines can motivate the

agent to dynamically acquire information and to report his signal truthfully.

Our paper contributes to the delegation literature initiated by Holmstrom (1984)

and extended by Melumad and Shibano (1991), Alonso and Matouschek (2008), Arm-

strong and Vickers (2010), Amador and Bagwell (2013), and Ambrus and Egorov

(2017), among others. As in all these papers, in our model the principal may grant

�exibility to the agent so that he can use his information, but granting too much �ex-

ibility may open up room for opportunistic behavior. However, these papers study

static models and do not address the issue of how to provide incentives to an agent

with evolving private information.3 In particular, our work emphasizes how the dy-

namic provision of incentives determines how information is used and for how long

learning takes place.

Grenadier, Malenko, and Malenko (2016) and Guo (2016) explore delegation mod-

els in dynamic contexts. In Grenadier, Malenko, and Malenko (2016), a timing deci-

sion needs to be made and an agent who is informed at time 0 communicates with

the principal throughout time. Whereas Grenadier, Malenko, and Malenko (2016) ex-

plore how the value of commitment for the principal depends on the sign of the agent's

bias, we take commitment for granted but explore how to delegate with evolving pri-

vate information. As Grenadier, Malenko, and Malenko (2016) point out, their full

commitment case is similar to standard static delegation problems and, as a result,

interval delegation is optimal. In Guo (2016), the principal delegates the decision to

experiment over time to an agent who has private information about its pro�tability

3While in our model the principal dynamically screens the agent's information, we depart from
the growing dynamic mechanism design literature (Pavan, Segal, and Toikka, 2014; Bergemann and
Valimaki, forthcoming; Madsen, 2018) by assuming transfers are infeasible. We explore the role of
transfers in Section 5 and Section E.2 of Supplementary Material.

5



at time 0.4 Once experimentation starts, however, all signals are public. A compar-

ison between our paper and Guo (2016) highlights the di�erences between private

and public learning, which have important implications for the design of incentive

schemes. In her model with a continuum of types, since signals are public, once a

good signal arrives, the risky project is publicly known to be optimal and is fully

implemented. In our model, however, investment decisions commonly known to be

optimal are nonetheless delayed. This is the principal's response to the problem of

providing incentives to an agent with evolving private information.

Our paper is also related to the study of optimal delegation decisions when in-

formation acquisition is endogenous. In Aghion and Tirole (1997), Szalay (2005)

and Deimen and Szalay (forthcoming), information acquisition is a one-time deci-

sion, therefore the trade-o� between extracting information and using information

e�ciently is di�erent from ours. Lewis and Ottaviani (2008) study a setting where

the agent searches for the best alternative over time and money transfers are used,

which we rule out.

Frankel (2016), Li, Matouschek, and Powell (2017), Lipnowski and Ramos (2017),

Guo and Hörner (2018), and Chen (2018) study repeated delegation models in which

parties face a stream of decisions. In these models, incentives can be provided by

linking the di�erent decisions. In contrast, we study situations in which a single,

irreversible decision is to be made and therefore linking decisions is infeasible. 5

Finally, our work is related to dynamic persuasion models, particularly, McClellan

(2017), Henry and Ottaviani (forthcoming), and Orlov, Skrzypacz, and Zryumov

(forthcoming). These papers explore how to design approval rules when learning

is costly, signals are public, and incentives are misaligned ex-post. In contrast, we

mainly focus on the case where learning is costless, signals are private, and incentives

are misaligned ex-ante. In Section 5.3, we allow costly learning.6

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 formalizes the dynamic delegation problem. Section 4 presents our main results.

Section 5 discusses some extensions. Section 6 concludes.

4Guo (2016) focuses on the full commitment case, but she also shows that the sign of the agent's
bias determines the value of commitment.

5Another di�erence is that, with the exception of Guo and Hörner (2018), the repeated delegation
literature has focused on serially uncorrelated incomplete information.

6It is not possible to extract and use any information in a model with private learning in which
incentives are misaligned ex-post (and not just ex-ante as in our baseline model).
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2 The Model

We consider an in�nite-horizon continuous-time game played by a principal and an

agent. There is an initially unknown state θ ∈ {0, 1}. We call θ = 1 the good state

and θ = 0 the bad state. At time 0, the agent and the principal are symmetrically

uninformed about the state θ, with P[θ = 1] = p0 being the initial prior.

The agent privately learns about the state without cost.7 A signal is generated

according to an exponential distribution with arrival rate λθ, which depends on θ.

Speci�cally, conditional on θ, over an interval [t, t + dt], a signal st = θ is realized

with probability λθdt. The arrival of the signal is privately observed by the agent.

Thus, the arrival of a signal perfectly reveals the state to the agent. We say that the

agent is uninformed if he has not observed a signal. The agent's private history up

to period t is denoted ht. We use ∅ to denote the history with no signal.

The private belief process pt = P[θ = 1 | ht] is formed according to the initial

prior p0 and the agent's private history ht up to period t. The law of motion for the

agent's private belief pt can be derived as follows. If a signal st = 1 arrives during the

interval [t, t+ dt), the belief jumps to 1; if a signal st = 0 arrives during the interval,

the belief jumps to 0. If no signal arrives, Bayes's rule can be used to deduce that

the posterior at the end of t+ dt is

pt + dpt =
pt(1− λ1dt)

(1− pt)(1− λ0dt) + pt(1− λ1dt)
.

That is, when no signal arrives, the evolution of the belief is governed by the di�er-

ential equation8

dpt
dt

= −(λ1 − λ0)pt(1− pt).

We assume that λ0 < λ1 and thus no news is bad news. In other words, the belief

decreases in the absence of a signal. We show that our results extend to the case

λ0 ≥ λ1 in Section E.3.

The principal chooses yt ∈ {0, 1} at each t ≥ 0. yt = 1 means to invest and yt = 0

means not to invest. The decision to invest is irreversible: if yt = 1 for some t, then

yτ = 1 for all τ > t and the interaction ends.

Players' preferences over investment coincide conditional on θ. During each inter-

7In Section 5, we extend our model and results to incorporate costly learning.
8See Liptser and Shiryaev (2013) for details.
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val [t, t + dt) for which yt = 0, both players receive zero payo�. Conditional on θ, if

the principal invests at time t, she gets total discounted payo�s equal to

e−RtV if θ = 1 and e−Rt(−ν) if θ = 0,

whereas the agent gets total discounted payo�s equal to

e−rtW if θ = 1 and e−rt(−ω) if θ = 0,

where R, r > 0 are the discount rates for the principal and the agent, respectively,

and V , ν, W , and ω are strictly positive.

To state our assumption on the con�ict of interest, it is useful to describe the one-

person benchmark. Suppose that the agent not only perfectly observes the arrival

of the signal but also has the right to invest. The optimal policy for the agent is

characterized by a cuto� p∗ := (λ1+r)ω
rW+(λ1+r)ω

(Keller, Rady, and Cripps, 2005). The

agent �nds it optimal to invest given the current belief p if and only if he is optimistic

enough about the state; that is, p ≥ p∗. Intuitively, the optimal policy must be a

cuto� policy because if the uninformed agent does not �nd it attractive to invest at

t, then neither does the uninformed agent at t + dt who is more pessimistic about

the value of the investment than at t. Similarly, suppose that the principal not only

controls decisions but also observes the signal. Given the current belief p, the principal

would �nd it optimal to invest i� p ≥ q∗ = (λ1+R)ν
RV+(λ1+R)ν

.

We can now state the assumption on the con�ict of interest, which is maintained

throughout the paper.

Assumption 1 p∗ < p0 < q∗.

This assumption implies that at t = 0, the agent wants to invest immediately

whereas the principal wants to invest only after observing a good signal. An equivalent

formulation for Assumption 1 is

W

ω

r

λ1 + r

p0

1− p0

> 1 >
V

ν

R

λ1 +R

p0

1− p0

.

One can interpret this to mean that the gain-loss ratio for the agent, W/ω, is

su�ciently high while the gain-loss ratio for the principal, V/ν, is su�ciently low.

Alternatively, one can think of the agent being su�ciently impatient (r large) and

8



the principal being su�ciently patient (R small). Note that when Assumption 1 does

not hold, the principal can easily align the agent's incentives.9

Since λ1 > λ0, as time goes on and no signal is received, the agent gets more

pessimistic. At some point, the agent would prefer to wait and invest only after

observing the good signal. Let t∗ be the time at which the agent becomes indi�erent

between investing and waiting for a good signal. Formally, for λ1 > λ0,

t∗ =
1

λ1 − λ0
ln
( p0

1− p0

W

ω

r

(λ1 + r)

)
.

Figure 1 illustrates (pt)t≥0 and t
∗. For t < t∗, the principal's and the agent's interests

are not aligned when no signal has arrived. For t > t∗, the principal's and the agent's

interests coincide for all private histories. We can thus interpret t∗ as a measure of

how long it takes for the incentives to be aligned. t∗ increases as the agent becomes

more willing to invest without any information (i.e. when W/ω becomes larger) and

as the absence of signal becomes less informative (i.e. when λ1 − λ0 becomes smaller

so that learning becomes slower).

3 The Dynamic Delegation Problem

We set up the principal's problem of eliciting the agent's evolving private information

to maximize her expected pro�ts. Following the delegation literature (Holmstrom,

1984), we focus on incentive provision through the design of control rights in the

absence of transfers. To do this when learning is private, we formulate a dynamic

mechanism design problem with commitment. At each t ∈ [0,∞) the agent sends a

costless message mt ∈ {0, 1, ∅} given the private history ht.10 The principal commits

to an action yt ∈ {0, 1} as a function of the message history up to t, mt ≡ {mτ}0≤τ<t.

A contract is a tuple 〈T, τ〉, with T ∈ <+ ∪ {∞} and τ : [0, T ] → <+ if T < ∞
while τ :<+ → <+ if T = ∞. We use dom(τ) to denote the domain of τ . If the

agent has reported mt = ∅ for all t ∈ dom(τ), the principal invests at time T . The

9To see this, note that if q∗ < p0, then the principal would like to invest at t = 0 and would not
need the agent. If p0 < p∗ and p0 < q∗, both the principal and the agent would like to invest only
after observing a good signal. In this case, both parties' preferences are perfectly aligned throughout
the game and the �rst best can be achieved even without commitment.

10Given our single-agent setting, it is without loss to restrict to direct mechanisms here as well
as in the costly learning case in Section 5.3. See Sugaya and Wolitzky (2017) for details.
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Figure 1: Evolution of pt when no signal arrives. Preferences are aligned after time
t∗. Parameter values: λ1 = 5, λ0 = 4.8, R = r = 0.03, p0 = 0.8, w = 10, W = 1800,
t∗ = 7.28.

function τ is the time at which the investment is made when the agent reports that

he has received the good signal at t (mt = 1). The principal never invests after the

agent reports a bad signal. In Section D of Supplementary Material, we de�ne the

general class of contracts and show that our restriction to contracts of the form 〈T, τ〉
is without loss of generality. We also allow for random contracts in Section 5. 11

We now describe the feasibility and incentive constraints. Since time is irreversible,

τ(t) ≥ t for all t ∈ dom(τ). To ensure the agent truthfully reveals when he is informed

that the state is good at t instead of delaying the report, it must be that τ(t) is non-

decreasing. Otherwise, take τ(t1) > τ(t2) with t1 < t2 and note that the agent who

receives the good signal at t1 could wait and report the good signal at t2 > t1. The

principal also needs to ensure that the informed agent at t reveals truthfully instead

of pretending to be uninformed during the rest of the game. Formally, τ(t) ≤ T for

all t ∈ dom(τ).

A key incentive constraint is to ensure the uninformed agent at t does not want to

11Here the agent has no outside option. In Section E.1 of Supplementary Material, we consider the
case where the agent is allowed to withdraw after claiming a good signal and receive payo� 0 before
investment occurs and show that the optimal deterministic contract features a �xed investment time.
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claim that he is informed and has received a good signal. To ensure truthful revelation

of the uninformed agent at t, 〈T, τ〉 must satisfy∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
≥ max

{
e−rτ(t)(− ω + pt(W + ω)), 0

}
for all t ∈ dom(τ). Note that the agent can always claim that the state is bad and

ensure a payo� equal to 0. The right-hand side is the maximum between 0 and the

expected payo� of an uninformed agent at t (who has belief pt) if he claims the state

is good and induces investment at τ(t). The left-hand side is the agent's expected

payo� if he claims to be uninformed and his continuation policy is to report truthfully.

In this case, he could receive the good signal at s < T and get the payo� e−rτ(s)W

with conditional probability ptλ
1e−λ

1(s−t)ds, or receive no signal before T and induce

an uninformed investment decision at T .12

The dynamic delegation problem can be formulated as:

max
T∈<+∪{∞},τ(·)

∫ T

0

p0λ
1e−λ

1se−Rτ(s)V ds+
(
p0e
−λ1T e−RTV + (1− p0)e−λ

0T e−RT (−ν)
)
(1)

subject to

τ(t) ≥ t ∀t ∈ dom(τ) (2)

τ is non-decreasing (3)

τ(t) ≤ T ∀t ∈ dom(τ) (4)∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)

≥ max
{
e−rτ(t)(− ω + pt(W + ω)), 0

}
t ∈ dom(τ). (5)

12This incentive constraint could be considered insu�cient as the agent could �nd it optimal to
be truthful in some interval [t, t+ ε] and lie after t+ ε. As we show in Section D of Supplementary
Material, this is not the case.
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This problem maximizes the principal's expected payo�s (1) over all contracts sub-

ject to the feasibility constraint (2) and the dynamic incentive constraints (3)-(5).

The dynamic incentive constraints ensure that at any private history, the agent has

incentives to truthfully reveal his information. Since private information changes over

time, our dynamic delegation problem contrasts with most related problems in the

literature that study either static models (Holmstrom, 1984; Melumad and Shibano,

1991; Alonso and Matouschek, 2008; Amador and Bagwell, 2013) or dynamic models

in which information asymmetry is present at the beginning of the relationship (Guo,

2016; Grenadier, Malenko, and Malenko, 2016).

4 Analysis

In this section, we characterize the solution to the dynamic delegation problem.

4.1 Delays

This subsection characterizes the delay with which an investment commonly known

to be pro�table is implemented. The proofs are relegated to Appendix A. Our �rst

result shows that optimal investments are delayed in any contract that satis�es the

dynamic incentive constraints.

Lemma 1 Let 〈T, τ〉 satisfy (2) and (5). Then, τ(t) > t, for all t < min{t∗, T}.

Conditional on the project being revealed pro�table at t < min{t∗, T}, the imple-
mentation time is ine�cient (from both the principal's and the agent's perspectives).

This distortion arises precisely due to the fact that learning is private: if the im-

plementation time were not distorted and τ(t) = t for some t < min{t∗, T}, the
uninformed agent at t would claim he learned that the state is good in order to

induce immediate investment.

In order to solve our dynamic delegation problem, it will be useful to �nd a solu-

tion τ to (1) keeping T ∈ <+ ∪ {∞} �xed. Solving the dynamic delegation problem

for a �xed T is analytically useful and allows us to illustrate the tradeo�s involved

when delegating to an agent who privately learns over time. The dynamic delega-

tion problem keeping T �xed can be analyzed by �nding solutions to the following

relaxed problem (6). It is obtained by ignoring constraints (3)-(4) and by imposing
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the feasibility constraint (2) and the dynamic incentive constraint (5) over subsets of

dom(τ).

max
τ(·)

∫ T

0

p0λ
1e−λ

1se−Rτ(s)V ds+
(
p0e
−λ1T e−RTV + (1− p0)e−λ

0T e−RT (−ν)
)

(6)

subject to

τ(t) ≥ t ∀t ≥ min{t∗, T}, (7)∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)

≥ max
{
e−rτ(t)(− ω + pt(W + ω)), 0

}
∀t ≤ min{t∗, T}. (8)

The following result establishes a necessary and su�cient optimality condition for

the relaxed problem (6).

Lemma 2 Let τ satisfy (7) and (8).

(a) Suppose T ≤ t∗. Then, τ solves the relaxed problem i� (8) binds for almost

every t ∈ [0, T ].

(b) Suppose T > t∗. Then, τ solves the relaxed problem (6) i� (7) binds for almost

every t ≥ t∗ and (8) binds for almost every t ≤ t∗.

In the optimal solution to the relaxed problem, the uninformed agent is indi�erent

between truthful revelation and claiming to know that the state is good for almost

all t ≤ min{t∗, T}. To see this, suppose that τ is optimal and there is a set A ⊆
[0,min{t∗, T}] of positive measure such that for any t′ ∈ A, the uninformed agent

strictly prefers to reveal the truth. The principal could construct a new function τ ′

that coincides with τ outside of A but is slightly smaller than τ inside A. τ ′ results

in higher expected payo�s for the principal than τ , and it satis�es (7) and (8). Thus,

τ cannot be optimal. Moreover, Lemma 2 also shows that for t > min{t∗, T}, there
is no need to distort investment. Since after t∗ the incentives are aligned, delaying

investments only makes it harder to provide incentives before t∗.

We now further explore an important consequence of the binding incentive con-

straint (8) over [0,min{t∗, T}).
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Lemma 3 Fix T and τ(·) such that (8) binds for all t < min{t∗, T}. Then, the

derivative of τ with respect to t is given by

τ̇(t) = (
λ0

r
)

ω

W pt
1−pt − ω

for all t < min{t∗, T}. In particular, over t < min{t∗, T}, τ is strictly increasing and

convex, and its slope is strictly less than 1.

This lemma characterizes the slope of a timing policy τ when (8) is binding. It can

be intuitively derived as follows. Since (8) is binding everywhere in [0,min{t∗, T}), the
uninformed agent at t is indi�erent between claiming he has received the good signal

and truth-telling for all t′ ≥ t. The expected payo� the agent gets from truth-telling

for t′ ≥ t can be decomposed into the current and continuation payo�s. Current

payo�s are 0 as by declaring truthfully no investment is made at t. For continuation

payo�s, note that since the incentive constraint (8) is also binding at t + dt, the

uninformed agent at t + dt gets the same expected payo� from truth-telling for all

t′ ≥ t+dt and from pretending to have observed the good signal at t+dt. Combining

these two remarks, the payo� the uninformed agent gets at t from being truthful for

all t′ ≥ t is the same as what he gets from truth-telling at t and lying at t+ dt. As a

result, the uninformed agent at t is indi�erent between (i) claiming to have observed

the good signal at t (Lie at t), and (ii) being truthful at t but lying at t+ dt if he is

still uninformed (Lie at t+ dt). Table 1 shows the agent's payo�s from both policies

for all possible outcomes.

Outcomes st = 1 st = 0 st = ∅, θ = 1 st = ∅, θ = 0

Lie at t e−rτ(t)W e−rτ(t)(−ω) e−rτ(t)W e−rτ(t)(−ω)
Lie at t+ dt e−rτ(t+dt)W 0 e−rτ(t+dt)W e−rτ(t+dt)(−ω)
Probabilities ptλ

1dt (1− pt)λ0dt pt(1− λ1dt) (1− pt)(1− λ0dt)

Table 1: Payo�s from two di�erent policies. Under the �rst policy (Lie at t), the
uninformed agent claims that the state is good at t. Under the second policy (Lie
at t + dt), the uninformed agent claim to be uninformed at t but lies at t + dt if he
remains uninformed.
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Since the expected payo�s from both policies coincide,

e−rτ(t)
(
ptW + (1− pt)(−ω)

)
= e−rτ(t+dt)

(
ptW + (1− pt)(1− λ0dt)(−ω)

+ 0 · (1− pt)λ0dt
)
.

Equivalently,

(1− pt)λ0dtωe−rτ(t) = (e−rτ(t) − e−r(τ(t+dt)))
(
ptW + (1− pt)(1− λ0dt)(−ω)

)
.

Rearranging terms, dividing by dt and taking dt→ 0, we deduce that

(1− pt)λ0ω = rτ̇(t)
(
ptW + (1− pt)(−ω)

)
, (9)

which provides the characterization in Lemma 3.

Equation (9) illustrates how τ balances the costs and bene�ts of learning for the

agent. The left hand side in (9) is the bene�t from learning as the agent could avoid

investment when the project is bad. The right hand side in (9) is the cost of learning

as when no signal arrives the investment is just delayed. An important implication

from this characterization is that τ̇(t) < 1 and thus the delay with which investment

decisions are made, τ(t) − t, is decreasing in t. Intuitively, to motivate the agent

to learn, the agent's cost of learning has to be lower than that in the single-player

benchmark for the agent and therefore the principal sets τ̇(t) < 1. In Section E.3

of Supplementary Material, we show that this feature of decreasing delays is robust

when λ0 ≥ λ1.

4.2 Optimal Dynamic Delegation

This subsection characterizes the solutions to the optimal delegation problem and es-

tablishes the tradeo� between the amount of information acquired and how e�ectively

it is used.

We �rst �nd a solution τT to the relaxed problem when T ≤ t∗. We impose (8)

binding everywhere in [0, T ]. By Lemma 3, (8) binding in [0, T ) gives

τ̇T (t) = (
λ0

r
)

ω

W pt
1−pt − ω

, t < T. (10)

(8) binding at T gives

τT (T ) = T. (11)
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These two together give us

τT (t) = T − λ0

r

∫ T

t

1
W
ω

ps
1−ps − 1

ds, t ≤ T. (12)

Figure 2 illustrates the solution.

Since τT (·) satis�es the conditions in Lemma 2, it solves the relaxed problem. We

now verify that it actually solves the original dynamic delegation problem (1) for a

given T . First note that τT satis�es (2). Indeed, τT (t) = τT (T ) −
∫ T
t
τ̇T (s)ds and,

since τT (T ) = T and τ̇T (t) < 1, τT (t) ≥ τT (T )− (T − t) = t for all t ∈ [0, T ]. Second,

τT satis�es (5) because it holds with equality over t ∈ [0, T ]. Finally, since τT (t)

is increasing over [0, T ] and τT (T ) = T , τT also satis�es the incentive constraints

(3)-(4). As a result, τT indeed solves the dynamic delegation problem (1) for a given

T . As can be seen, the incentive constraint for the uninformed agent is the key to

pinning down the optimal contract when T ≤ t∗.

The following result provides a key insight for solving for the optimal T < t∗.

Proposition 1 Let t < T < T̂ < t∗. Then, τT (t) < τ T̂ (t).

Figure 3 illustrates Proposition 1. Increasing the deadline is bene�cial for the

principal in that more information is acquired and thus investment in the bad state

is less likely to happen. Proposition 1 shows that more learning imposes a nontrivial

incentive cost on the principal because when T increases, τT (t) must increase too.

This means that when T increases, investments are delayed more when the good

signal is received.

Formally, Proposition 1 follows immediately from Equation (12). To better un-

derstand Proposition 1, take t < T < T̂ and assume for the moment that t is close

to T . When the uninformed agent at t faces the contract 〈T, τT 〉, he knows that by
declaring truthfully, the investment will be made at T (unless a bad signal is received

in the meanwhile). Now, when the uninformed agent at t faces the contract 〈T̂ , τ T̂ 〉,
the earliest time at which the investment could be made is τ T̂ (T ) > T . As a result,

the expected continuation payo� that the uninformed agent gets at t by being truth-

ful is lower when he faces 〈T̂ , τ T̂ 〉 than when he faces 〈T, τT 〉. Therefore, to provide

incentives for truthful revelation at t, contract 〈T̂ , τ T̂ 〉 must punish the agent even

more when he claims a good signal. In other words, τ T̂ (t) > τT (t). This intuition

can be iteratively applied backwards to render this property for all t < T .
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Figure 2: The dark line shows the time at which the investment is made as a function
of the time at which the good signal is received. For t < T , the investment decision
is delayed and the delay, τT (t)− t, is decreasing. Parameter values: λ1 = 5, λ0 = 4.8,
R = r = 0.03, p0 = 0.8, v = 120, w = 10, V = 480, W = 1800, T = 2.4.

We now solve the relaxed problem given T > t∗ by imposing (8) binding every-

where in [0, t∗) and (7) binding everywhere in [t∗, T ]. By Lemma 3, (8) binding in

[0, t∗) implies

τ̇T (t) = (
λ0

r
)

ω

W pt
1−pt − ω

t ∈ [0, t∗).

Combined with (7) binding for t ≥ t∗, we have

τT (t) =

t
∗ − λ0

r

∫ t∗
t

1
W
ω

ps
1−ps

−1
ds t ≤ t∗,

t t > t∗.

Lastly, to make sure that τT satis�es (8) at t∗ and therefore solves the relaxed

problem, we need T to be in�nity. To see this, notice that at t∗, by being truthful

that he has not received a signal, the agent receives the payo� from the policy �invest

as soon as a good signal arrives before T and invest at T if no signal arrives before

T ,� which is weakly less preferred to the policy �invest as soon as a good signal arrives

and do not invest if no signal arrives.� Since at t∗ the agent is indi�erent between the

latter policy and the policy �invest right away,� we need T = ∞ to ensure incentive
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compatibility. Therefore a solution to the relaxed problem is

τ∞(t) =

t
∗ − λ0

r

∫ t∗
t

1
W
ω

ps
1−ps

−1
ds t ≤ t∗,

t t > t∗.

Since τ∞ is increasing and (5) is satis�ed everywhere in [0,∞), it solves the original

dynamic delegation problem (1) given that T > t∗.

Figure 3: For t ≤ T < T̂ , τT (t) < τ T̂ (t). Parameter values: λ1 = 5, λ0 = 4.8,
R = r = 0.03, p0 = 0.8, v = 120, w = 10, V = 480, W = 1800, T = 2.4, T̂ = 4.3.

The following theorem summarizes our characterization.

Theorem 1 The optimal contract takes one of the following two forms:

(a) There is a deadline T < t∗. If a good signal arrives before T , investment happens

with a delay. If no signal arrives before T , investment happens at T .

(b) If a good signal arrives before t∗, investment happens with a delay. If a good

signal arrives after t∗, investment happens with no delay.

To �nd the optimal contract 〈T ∗, τT ∗〉, it su�ces to compare the optimal solution
when T ∈ [0, t∗] to the case in which T = ∞. It is thus enough to compare the

expected payo� for the principal from the optimal τT when T ≤ t∗ to that from τ∞.
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The optimal contract can be implemented by setting time-dependent delegation

sets illustrated in Figure 4. At any t < min{t∗, T ∗}, the agent is allowed to commit

to invest in [τT
∗
(t),∞) or just wait and commit later. For t ≥ min{t∗, T ∗}, the agent

is granted full freedom.

Figure 4: For t < min{t∗, T ∗}, the agent can choose to invest at any t′ ∈ [τ(t),∞).
For t ≥ min{t∗, T ∗}, the agent can invest at any t′ > t. Parameter values: λ1 = 5,
λ0 = 4.8, R = r = 0.03, p0 = 0.8, v = 120, w = 10, V = 480, W = 1800, T = 4.3,
t∗ = 7.2.

4.3 Comparative Statics

We now derive some comparative statics results. These results assume that parame-

ters satisfy Assumption 1, that is, W
ω

r
λ1+r

p0
1−p0 > 1 > V

ν
R

λ1+R
p0

1−p0 .

Proposition 2

(a) Fix all parameters except W and ω. There exist cuto�s 0 < κ < κ̄ such that for

all W/ω < κ, the optimal contract sets no deadline, whereas for W/ω > κ̄ the

optimal contract sets a deadline T ∗ < t∗.

(b) Fix all parameters except V and ν. There exist cuto�s 0 < η < η̄ such that for

all V/ν < η, the optimal contract sets no deadline, whereas for V/ν > η̄ the

optimal contract sets a deadline T ∗ < t∗.
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Part (a) shows that whenW/ω is su�ciently small, it is optimal to invest only after

the principal has perfectly learned that θ = 1. In this case, t∗ is small, so the incentives

will become aligned rapidly, and there is no need to signi�cantly delay investments

for t < t∗. In contrast, when W/ω is large, t∗ is large, and the con�ict of interest is

severe. So decisions to invest need to be signi�cantly distorted for t < min{T ∗, t∗}.
To economize on distortions early in the game, the principal commits to invest at a

deadline T ∗ < t∗ even when this means learning stops early.

Part (b) characterizes the solutions as we vary the principal's payo�s V and ν.

When V/ν is small, V is small compared to ν and it is relatively costly for the principal

to invest when the state is bad. To avoid the costs of a failure, the principal prefers

to perfectly learn the state even when this entails signi�cant delays for t < t∗. In

contrast, when V/ν is large, the cost of a failure is small, and the principal �xes a

deadline T ∗ < t∗ that stops learning and reduces distortions for t < T ∗.

Proposition 2 sheds light on how di�erent organizations should provide incentives

for learning. For example, the FDA incurs signi�cant costs when approving bad drugs

(so that ν is large). Our results suggest that the FDA should set lengthy revision

processes to ensure pharmaceutical companies learn the value of the drugs even if this

entails substantial delays between the drugs' discovery and the FDA's �nal approval.

In contrast, the board of a company that is contemplating a partially reversible ac-

quisition (so ν is small) or that cannot align the manager's career incentives (so W/ω

is large) should set a deadline T ∗ < t∗ that facilitates truthful communication even

at the possible cost of an incorrect decision.

5 Extensions

5.1 Random Mechanisms

To investigate the robustness of the optimal mechanism identi�ed in Section 3, we

now allow the principal to choose a random timing of investment. In particular, apart

from delaying the decision to invest, now the principal can also commit to never invest

with some probability. By varying this probability with the time at which the agent

claims a good news, the principal can use the threat of no investment to incentivize

learning. We show that as long as the principal is at least as patient as the agent,

the optimal deterministic mechanism remains optimal among the family.
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Following Pavan, Segal, and Toikka (2014), we focus on random mechanisms which

do not allow the agent to update his belief about the outcomes of the randomization

until the game ends.13 In particular, we study the following family of contracts: let

T ∈ <+ ∪ {∞} be deterministic. At any t ≤ T , if the agent announces mt = 1, the

principal chooses the investment time according to qτ (· | t), which is the probability

measure from the space ([t,∞],B([t,∞]), qτ (· | t)). In addition, if T < ∞ and the

agent never announces mt = 1 or mt = 0 for any t ≤ T , the principal chooses the

investment time according to qT , which is the probability measure from the space

([T,∞],B([T,∞]), qT (·)). Once the investment time has been determined by qτ or

qT , the game ends.

This family of random mechanisms allows us to illustrate the connection between

deterministic and random mechanisms. As shown in the following proposition, the

discount factor e−rτ(t) resulting from the delay function in a deterministic contract

can act as probabilities in a deterministic contract. As a result, the optimal random

contract (qt, qT , T ) can be characterized essentially in the same way. When comparing

the principal's payo� from the optimal random contract with that from the optimal

deterministic contract, what matters is the relative patience of the players. Since the

agent gets the same discounted payo� from the optimal random and deterministic

contract, the principal, who is strictly more patient, gets strictly higher payo� from

the optimal deterministic contract. In other words, the agent's payo� is discounted

equally under the optimal deterministic and random contracts while the principal's

payo� is less discounted under the deterministic contract. Therefore when the agent

is strictly less patient, delaying the investment is relatively more e�ective than ran-

domization when it comes to providing incentives. The opposite is true when the

agent is strictly more patient.

Proposition 3 The optimal deterministic contract is weakly better than all random

contracts with no leakage i� R ≥ r.

5.2 Transfers and Limited Liability

In this subsection, we explore the role of transfers. We show that when the agent faces

limited liability, a principal who can transfer money to the agent after a good signal

strictly prefers to motivate learning by setting delays instead of transfers. Thus, even

13See page 619, �De�nition 4 - No Leakage� in Pavan, Segal, and Toikka (2014) for details.
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when the principal could incentivize the agent by transfering money, it is optimal not

to do it.14

A contract with transfers is a tuple 〈T, τ, q〉 where T ∈ <+ ∪ {∞} and τ(·) are as
in Section 3, while q: [0, T ] → <+. Contract 〈T, τ, q〉 works as described in Section

2, but whenever the agent declares a good signal at t ≤ T , the principal not only

commits to make a decision at τ(t) but also transfers q(t) ≥ 0 to the agent at t.15

This family of contracts allows the principal to subsidize the agent for decisions that

are made later in the game. Intuitively, the principal now has delays and transfers to

motivate the uninformed agent to learn over [0, T ].

The incentive constraints are∫ T

t

ptλ
1 e
−λ1s

e−λ1t

(
e−rτ(s)W + e−rsq(s)

)
ds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
(13)

≥ e−rτ(t)
(
ptW + (1− pt)(−ω)

)
+ e−rtq(t)

e−rτ(t)W + e−rtq(t) non increasing (14)

e−rτ(t)W + e−rtq(t) ≥ e−rTW (15)

Thus, the principal solves

max
〈T,τ,q〉

∫ T

0

p0λ
1e−λ

1t(e−Rτ(t)V − e−Rtq(t))dt+ p0e
−λ1T e−rTW + (1− p0)e−λ

0T e−RT (−ω)

(16)

subject to (2)-(13)-(14)-(15). We will proceed as before by �xing T < t∗ and exploring

the solutions 〈τ̃T , q̃T 〉 to the dynamic delegation problem with transfers (16).

Proposition 4 Take q̃ ≡ 0 and τ̃ ≡ τT , where τT is the solution to the baseline

dynamic delegation problem characterized in (12). Then, 〈τ̃ , q̃〉 is optimal for (16).

This proposition says that using delays to motivate the agent is a more e�cient

way than the use of transfers. As the delegation literature has long pointed out,

14In Section E of Supplementary Material, we show that when the agent is not subject to limited
liability, transfers allow the principal to achieve the �rst best and extract the full surplus.

15We restrict attention to transfers that reward good signals only. The principal could also use
transfers that reward no information, or even bad signals. The class of transfers we consider seems
appropriate for applications and is a natural candidate to overthrow delays.
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transfers are oftentimes unfeasible and therefore there is little room to use them as

an incentive devise Holmstrom (1984). We strengthen this observation by showing

that even when some forms of transfers may be feasible, a principal facing an agent

that privately learns over time should distort decisions rather than using subsidies.

In doing so, we provide an important robustness check for our main results in Section

4.

The economics behind Proposition 4 is simple. Take any contract 〈τ̃ , q̃〉 and
suppose that there is a positive measure set A ⊆ [0, T ] such that q̃(t) > 0 for all

t ∈ A. For each t ∈ A, on the (τ, q) plane we can draw the indi�erence curves

crossing (τ̃(t), q̃(t)) for both the truthful informed agent (who knows and claims that

the state is 1) and for the lying uninformed agent (whose belief is pt but claims

mt = 1) :

Iinfo : {(τ, q) | e−r(τ−t)W + q = e−r(τ̃(t)−t)W + q̃(t)}

Iuninfo : {(τ, q) | e−r(τ−t)(ptW+(1−pt)(−ω))+q = e−r(τ̃(t)−t)(ptW+(1−pt)(−ω))+q̃(t)}

As shown in Figure 5, a single crossing property holds and the indi�erence curve

for the informed agent, Iinfo, is steeper than the indi�erence curve for the lying

uninformed agent, Iuninfo.

Now, the principal would like to reduce delays and transfers but has to motivate

truthful reporting from the uninformed agent. To do that she would like to reward

the uninformed agent who decides to learn. Build a new contract 〈τ ∗, q∗〉 that is

identical to 〈τ̃ , q̃〉, but for t ∈ A, (τ ∗(t), q∗(t)) is in the indi�erence curve for the

lying uninformed agent, Iuninfo, to the left of (τ̃(t), q̃(t))), as in the picture. For

the truthful informed agent at t, (τ ∗(t), q∗(t)) belongs to an indi�erence curve I∗info
strictly more attractive than Iinfo. This means that for t′ < t, the new contract

provides even stronger incentives to the uninformed agent as his value from following

the truthful reporting strategy over [t′, T ] has increased. The new contract is thus

feasible and reduces delays and transfers. The principal therefore should not use

transfers to motivate the agent.16 Problem (16) reduces to our baseline dynamic

delegation problem (42) and has τT as a solution.

16The proof of Proposition 4 builds on this idea but has to deal with the feasibility constraint
τ(t) ≥ t. In the proof, we show that the feasibility constraint does not bind and therefore our
graphical argument goes through.
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(τ∗(t), q∗(t))

(τ̃(t), q̃(t))

Figure 5: In the optimal contract, transfers are not used.

5.3 Costly Learning E�ort

We extend our insights to a model with costly learning. Costly learning captures the

idea that the agent needs to incur an unveri�able e�ort cost to obtain signals. From

the principal's perspective, the agent may decide not to make e�ort and lie about his

information. The agency relationship thus becomes a dynamic moral hazard model

in which incomplete information evolves over time and transfers are unavailable. This

subsection shows how delays and deadlines can induce both truthful revelation and

costly learning in this more general environment.

We now assume that to generate signals at any time t, the agent needs to incur a

cost c ·dt per unit of time. The agent could also decide not to incur the cost, in which

case he receives no information. In the baseline model in Section 2, we assumed that

c = 0. We now explore the case c > 0.

The one-person problem for the principal remains unchanged as her payo�s have

not been modi�ed. When the agent has decision rights, the solution to his optimiza-

tion problem is characterized by cuto�s p̄ > p such that, given the current belief pt,

the agent invests if pt ≥ p̄, does not invest but incurs the learning cost if p̄ > pt ≥ p,

24



and does not invest or learn if pt < p. We assume that p̄ < p0 < q∗. This means that

at t = 0 the principal would like to wait for information, while the agent would like

to invest immediately.

A contract is a tuple 〈T, τ〉 that suggests learning e�ort at any t < T ans asks

the agent for his information.17 If the agent reports mt = ∅ for all t ∈ dom(τ), the

principal invests at T so yT = 1. Similar to the baseline model, if the agent reports

that he has received a good signal at t, then the principal invests at τ(t) ≥ t.

We simplify exposition by making two restrictions. First, we focus on strategies

for the agent in which the decision to stop experimentation is irreversible. This

restriction rules out strategies in which the agent shirks for a period of time but

keeps the option to resume e�ort late in the game by claiming to be uninformed.

After stating and discussing our main characterization result in Proposition 5, we

show that under the optimal contract the agent would not �nd pro�table to use more

complicated strategies and thus our restriction is without loss.

Second, we restrict attention to contracts 〈T, τ〉 in which the deadline T is not too

large. Concretely, we assume that T < t∗ (where t∗ was de�ned in Section 2). This

restriction implies that the optimal one-person decision problem for the uninformed

agent at T who has incurred the learning cost for all t ∈ [0, T ] (so that his belief is

pT ) is to invest at T . When this restriction does not hold, the agent would eventually

prefer to incur the learning cost and thus the incentives of the principal and the agent

become aligned. We therefore focus on the more interesting case in which along the

path of play, interests are misaligned.

Fix a contract 〈T, τ〉. Note that if the agent stops learning at S < T when he

is uninformed, his optimal response is to declare immediately that he observed the

good signal. This is a consequence of the restriction to irreversible stopping decisions,

but we relax this restriction after Proposition 5. We thus de�ne u〈T,τ〉(t, S) as the

total expected utility for the agent who is uninformed at t, learns in [0, S], reports

truthfully at any given t′ ∈ [0, S), and claims a good signal at t′ = S:

u〈T,τ〉(t, S) =

∫ S

t

ptλ
1 e
−λ1s

e−λ1t

(
e−rτ(s)W − c1− e−rs

r

)
ds

+

∫ S

t

(1− pt)λ0 e
−λ0s

e−λ0t
(−c)1− e−rs

r
ds+ pt

e−λ
1S

e−λ1t
e−rτ(S)W

+ (1− pt)
e−λ

0S

e−λ0t
e−rτ(S)(−ω)− c1− e−rS

r

(
pt
e−λ

1S

e−λ1t
+ (1− pt)

e−λ
0S

e−λ0t

)
.

17In particular, the message space for the agent is the same as in Section 2.
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A key incentive constraint is to ensure that the agent �nds it optimal to make the

costly e�ort at all times t ∈ dom(τ). In other words,

T ∈ arg max
S∈dom(τ)

u〈T,τ〉(t, S) (17)

for all t ∈ dom(τ). This constraint ensures that at any t, the agent �nds attractive

to keep e�ort and truthful reporting over the entire game. The dynamic delegation

problem is therefore formulated by maximizing (1) over all contracts 〈T, τ〉 subject to
(2)-(3)-(4)-(17).

We proceed by solving a relaxed delegation problem. In particular, to solve our

dynamic delegation problem, we �x T and maximize (1) over τ : [0, T ]→ <+ subject

to the constraint

u〈T,τ〉(t, T ) ≥ u〈T,τ〉(t, t) (18)

for all t ∈ dom(τ). This constraint relaxes (17) by imposing that the uniformed agent

�nds optimal to incur the learning e�ort over [t, T ] rather than lying at t to get the

investment immediately. The relaxed problem maximizes (1) subject to (18) for �xed

T .

The following proposition shows that our main qualitative results are preserved

when the cost c is low enough.

Proposition 5 The following hold:

(a) There exists c̄ = c̄(T ) > 0 such that for all c < c̄ the unique solution τT : [0, T ]→
<+ to

τ(T ) = T, τ̇(t) =
(1− pt)λ0ω − cer(τ(t)−t)

r(ptW + (1− pt)(−ω))
∀t ≤ T (19)

solves the relaxed problem given T .

(b) For all c < c̄, τT : [0, T ]→ <+ to (19) solves the dynamic delegation problem for

given T and 0 < τ̇T (t) < 1.

(c) Let t < T < T̂ and c < min{c̄(T ), c̄(T̂ )}. Then, τT (t) < τ T̂ (t).

This proposition shows that the main qualitative properties of the solution in

Section 4 extend to the model with costly e�ort. In particular, part (b) shows that

the delay with which investments are made, τT (t)− t > 0, is decreasing in t. Finally,
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part (c) shows that more learning imposes a nontrivial incentive cost on the principal

because when T increases, τT (t) must increase too and investments are delayed more

when the good signal is received.

Proposition 5 follows from two important insights. First, at any t the uninformed

agent should be indi�erent between lying to get the investment and stopping learning

at any future time. Indeed, in the Appendix we prove that u〈T,τ〉(t, S) is constant in

S. Similar to the intuition behind Lemma 3, this indi�erence condition results in the

ordinary di�erential equation (19) by noting that the bene�t of learning should equal

its cost:

(1− pt)λ0ωe−rτ(t)︸ ︷︷ ︸
Learning bene�t

dt = e−rτ(t)rτ̇(t)dt(ptW + (1− pt)(−ω))︸ ︷︷ ︸
Delay cost

+ ce−rtdt︸ ︷︷ ︸
E�ort cost

. (20)

Second, there are two opposing forces in the model with costly learning. One

the one hand, to ensure the uninformed agent incurs the costly e�ort and declares

truthfully, the decisions must be delayed. When c is large, it is hard to motivate the

agent to make the e�ort. Indeed, as (20) shows, when c is large the delay cost should

be small and eventually negative. To ensure the delay cost is negative, the principal

has to commit to τ̇ < 0. On the other hand, the principal also needs to ensure the

informed agent at t declares truthfully and thus τ̇ ≥ 0. When c is large enough, it is

not feasible to provide incentives to the agent regardless of his information at any t.

The restriction c < c̄ in part (b) solves this con�ict by ensuring that the delay cost

need not be negative to ensure incentives for the uninformed agent.

We have assumed the decision to stop learning is irreversible for the agent. When

c < c̄, the optimal contract actually provides incentives for costly e�ort and truthful

revelation over [0, T ] even when the agent can use arbitrary strategies (and is not

restricted to irreversible stopping decisions as we have assumed so far). In this version

of the model, at any t at which the message history is null (so the agent has declared

to be uninformed in the past), the agent can make any e�ort decision and declare any

message.

Proposition 6 Let c < c̄ and τ = τT be the solution from Proposition 5. When the

agent faces mechanism 〈T, τ〉 and is allowed to use arbitrary strategies, the agent's

optimal strategy is to make e�ort and declare truthfully at every t ∈ [0, T ] on the path

of play.
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This result says that our restriction to strategies in which the decision to stop

costly e�ort is irreversible is actually without loss. To intuitively see this result, sup-

pose that the agent has been on-path over [0, t], has belief pt at t and is contemplating

to declare he is uninformed but not to incur the learning cost at t. After the deviation,

the agent will come to period t+ dt with belief pt and has to decide what to do. Had

he not deviated, he would have belief pt+dt and would be indi�erent between lying

and incurring the e�ort at t+dt. Since he deviated, his belief at t+dt is pt > pt+dt so

he now �nds strictly optimal to lie and get the investment at τ(t + dt). If the agent

deviates at t, he thus gets payo�s e−r(τ(t+dt)−t)(ptW + (1− pt)(−ω)). But this payo�s

is strictly less than the payo� e−r(τ(t)−t)(ptW + (1 − pt)(−ω)) that the agent would

get by lying at t. Thus, the deviation cannot be optimal.

The proof of Proposition 6 �xes the mechanism 〈T, τ〉 and formulate the agent's

optimization problem using dynamic programming. The state variables for the agent's

optimization problem are the time t ∈ [0, T ] and belief p ∈ {0, 1}∪ [pt, p0]. Let v(p, t)

be the optimal value function for the agent before the principal has committed to a

decision. For p ≥ pt, the value function v(p, t) satis�es

v(p, t) =

max
{
− cdt+ pλ1dte−r(τ(t)−t)W +

(
1− pλ1dt− (1− p)λ0dt

)
(1− rdt)v(p+ dp, t+ dt);

−cdt+ pλ1dte−r(τ(t)−t)W + (1− pλ1dt− (1− p)λ0dt)e−rτ(t)−t((p+ dp)W + (1− p− dp)(−ω));

e−r(τ(t)−t)(pW + (1− p)(−ω)); (1− rdt)v(p, t+ dt); 0
}
.

The �rst term is the payo� from e�ort and truthful revelation at t, the second term

is the payo� after costly e�ort but lying if uninformed at the end of round t,18 the

third term is the payo� from no e�ort and declaring a good signal, the fourth term

is the payo� from no e�ort and declaring being uninformed, and the �fth term is the

payo� from no e�ort and declaring a bad signal. Rearranging terms, we derive the

18Obviously, the agent would not want to lie if he receives a good or a bad signal. Note that
this term converges to the payo� the agent gets by not incurring e�ort and declaring a good signal,
e−r(τ(t)−t)(pW + (1 − p)(−ω)). This means that the second term in this dynamic programming
equation can be ignored.
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following Hamilton Jacobi Bellman (HJB) equation: For p ≥ pt

0 = max {

−c+pλ1e−r(τ(t)−t)W − (r + pλ1 + (1− p)λ0)v(p, t) + vp(p, t)(λ
0 − λ1)p(1− p) + vt(p, t);

e−r(τ(t)−t)(pW + (1− p)(−ω))− v(p, t); vt(p, t)− rv(p, t);−v(p, t)}

with boundary conditions v(p, T ) = max{0, pW + (1 − p)(−ω)} for all p ≥ pt and

v(0, t) = 0 for all t ≤ T . This HJB is a partial di�erential equation whose solution

yields the optimal policy and is characterized in the following lemma.

Lemma 4 The following hold:

(a) v(p, t) = max{e−r(τ(t)−t)(pW + (1− p)(−ω)); 0} solves the HJB equation and is

the value function for the agent.

(b) The following strategy is optimal for the agent: When p > pt, declare a good

signal; when p = pt, make an e�ort and declare to be uninformed; when p = 0

declare a bad signal.

To prove part (a), we verify that the value v(p, t) in the lemma satis�es the HJB.

Proposition 6 follows from part (b). To see part (b) note that since when p = pt,

the agent gets exactly the same payo� by being obedient and truthful than by lying.

Indeed, τT is such that u〈T,τ
T 〉(t, S) is constant in S and, as we prove in the Appendix,

v(pt, t) =

∫ T

t

ptλ
1 e
−λ1s

e−λ1t

(
e−r(τ(s)−t)W − c1− e−r(s−t)

r

)
ds

+

∫ T

t

(1− pt)λ0 e
−λ0s

e−λ0t
(−c)1− e−r(s−t)

r
ds

+pt
e−λ

1T

e−λ1t
e−r(τ(T )−t)W + (1− pt)

e−λ
0T

e−λ0t
e−r(τ(T )−t)(−ω)

− c1− e−r(T−t)

r

(
pt
e−λ

1T

e−λ1t
+ (1− pt)

e−λ
0T

e−λ0t

)
.

This means that at belief p = pt, v(pt, t) is the discounted expected payo� the agent

gets by incurring e�ort cost and being truthful over [t, T ].
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6 Concluding Remarks

This paper studies a dynamic delegation model in which learning is private. Evolving

private information shapes the optimal contract in distinctive ways. Indeed, we show

that to ensure truthful revelation from the agent, the principal needs to delay invest-

ments commonly known to be optimal. As time goes on, the principal grants more

�exibility to the agent and, eventually, the agent is free to make any decision. Our

analysis uncovers a new tradeo� between how much information is acquired in the

relationship and how e�ciently new information is used. In sum, our analysis brings

out a number of new economic features arising in delegation models with evolving

private information.

Our model is stylized. The learning process is assumed to be Poisson,19 investment

is irreversible, and the agent has little freedom to decide how to learn.20 The model

could also be extended to allow for money burning.21 Our dynamic delegation model

with private learning can also be used as a workhorse to explore applied issues in

political economy, �nance, and organizational economics. We leave this research

projects for future work.

19Exploring a model with Brownian learning would be interesting, but evolving private informa-
tion makes the problem hard to analyze. When learning is Brownian delays and deadlines are likely
to play a role but the contract may have additional features.

20At the other extreme, the agent could decide any experiment that reveals information about
the state.

21This means that the agent can spend resources that have no value for the principal.
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Appendix

This Appendix consists of three parts. Appendix A provides proofs for Section
4.1. Appendix B provides proofs for Section 4.3. Appendix C provides proofs for
Section 5.

A Proofs for Section 4.1

Proof of Lemma 1. We prove that τ(t) > t for t < min{t∗, T}. For simplicity,
take t = 0. By contradiction, assume that τ(0) = 0. The left hand side of (5) can be
written as∫ T

0

(
p0λ

1 exp(−λ1s) exp(−rτ(s))W
)
ds+

(
p0 exp(−λ1T )e−rTW

+ (1− p0) exp(−λ0T )e−rT (−ω)
)
≤
∫ T

0

(
λ1 exp(−λ1s) exp(−rs)p0W

)
ds

+
(
p0 exp(−λ1T )e−rTW + (1− p0) exp(−λ0T )e−rT (−ω)

)
The inequality follows since τ(s) ≥ s. The term on the right hand side of the in-
equality above is the expected payo� that the agent would get following the policy
of investing if any good signal is revealed before T and investing at T if no signal is
revealed before T . Since p0 > p∗, this policy must result in strictly lower payo�s than
the expected payo� from investing at t = 0. So,∫ T

0

(
λ1 exp(−λ1s) exp(−rs)p0W

)
ds+

(
p0 exp(−λ1T )e−rTW

+ (1− p0) exp(−λ0T )e−rT (−ω)
)
< p0W + (1− p0)(−ω).

Combining these inequalities we deduce that (5) is violated at t = 0 when τ(0) = 0.
It follows that τ(0) > 0.
Proof of Lemma 2. Let τ ∗ solve the relaxed problem. By way of contradiction,
assume that for some A ⊆ [0,min{t∗, T}) with positive Lebesgue measure, and for all
t ∈ A, the constraint (8) is slack. For t ∈ dom(τ), de�ne

ϕt =

∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ

∗(s)Wds+
(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
Now, de�ne τ ′ as follows. For t /∈ A, τ ′(t) = τ ∗(t), while for t ∈ A,

e−rτ
′(t)(− ω + pt(W + ω)) = ϕt.
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For t ∈ A, e−rτ ′(t) > e−rτ
∗(t). Therefore, τ ′(t) ≤ τ ∗(t) for all t ∈ [0,min{t∗, T}], with

strict inequality for t ∈ A. We claim that τ ′ is feasible. To see this, note that for all
t ∈ [0,min{t∗, T}]∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ

′(s)Wds+
(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
≥
∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ

∗(s)Wds+
(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)
= ϕt

≥ e−rτ
′(t)(−ω + pt(W + ω))

≥ max{0, e−rτ ′(t)(−ω + pt(W + ω))}.

The �rst inequality follows since τ ′ is below τ ∗ and the equality is by de�nition of ϕt.
The second inequality follows with equality when t ∈ A (by de�nition of τ ′) and for
t /∈ A follows since τ ′ and τ ∗ coincide and τ ∗ satis�es 8. The third inequality follows
since t < t∗. It follows that τ ′ satis�es (7)-(8) and results in higher expected payo�s
than τ ∗. This contradicts the optimality of τ ∗ for the relaxed problem.

We now argue that when T > t∗ (case b in the statement of the Proposition),
τ ∗(t) = t for almost every t ∈ [t∗, T ]. Otherwise, there is a set A ⊆ [t∗, T ] of positive
measure such that for all t ∈ A, τ ∗(t) > t. Construct τ ′ that coincides with τ ∗ outside
A, but τ ′(t) = t for t ∈ A. It is clear that τ ′ satis�es (8) since for t < t∗, τ ′ does not
change the payo� from lying but increased the payo� from truth-telling. It follows
that τ ′ is feasible for the relaxed problem and results in higher expected payo�s for
the principal than τ ∗. This is a contradiction.

Now, to prove the converse, we assume that T > t∗. The proof of the converse
when T ≤ t∗ is analogous. Take τ ∗ such that (7)-(8) bind almost everywhere. Take
τ ′ that solves the relaxed problem (6). From the �rst part of this proof, τ ′ and τ ∗

coincide for almost every t ∈ [t∗, T ]. The previous step also shows that τ ′ is such that
(8) binds for almost every t ∈ [0,min{t∗, T}]. De�ne

u(t) =

∫ T

t

e−λ
1s(e−rτ

∗(s) − e−rτ ′(s))ds

for t ∈ [0,min{t∗, T}]. Note that u(t) is absolutely continuous and its derivative is
de�ned almost everywhere and equals −e−λ1t(e−rτ∗(t) − e−rτ ′(t)). Now, using the fact
that the constraint binds almost everywhere for both τ ′ and τ ∗, we deduce that for
almost every t ∈ [0,min{t∗, T}],

−ptλ1Wu(t) = u′(t)
(
− ω + pt(W + ω)

)
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and u(min{t∗, T}) = 0. It follows that for almost every t ∈ [0,min{t∗, T}],
d
dt

(
u(t)e

∫ t
0 H(s)ds

)
= 0 where H is a continuous function. Since u(min{t∗, T}) = 0,

u(t) = 0 for all t ∈ [0,min{t∗, T}]. In particular, 0 = u′(t) = −e−λ1t(e−rτ∗(t) −
e−rτ

′(t)) almost everywhere and therefore τ ′ and τ ∗ coincide for almost every t ∈
[0,min{t∗, T}]. Since τ ∗ satis�es (7)-(8), τ ∗ solves the relaxed problem.
Proof of Lemma 3. Since (5) is binding for all t ∈ [0,min{t∗, T}),∫ T

t

λ1e−λ
1se−rτ(s)Wds+

(
e−λ

1T e−rTW +
1− pt
pt

e(λ0−λ1)te−λ
0T e−rT (−ω)

)
= e−λ

1te−rτ(t)(W +
1− pt
pt

(−ω))

where we use the fact that t ≤ t∗. Since the left hand side of this equation and pt

are di�erentiable, so is τ . Taking derivatives and using the fact that d
dt

(
1−pt
pt

)
=

(λ1 − λ0)1−pt
pt

, we deduce that

−λ1e−λ
1te−rτ(t)W = −(λ1 + rτ̇(t))e−λ

1t−rτ(t)
(
W +

1− pt
pt

(−ω)
)

+ e−λ
1t−rτ(t)(λ1 − λ0)

1− pt
pt

(−ω).

Solving for τ̇(t), we deduce that

τ̇(t) = (
λ0

r
)

ω

W pt
1−pt − ω

.

The slope of τ is nonnegative. To see that τ is convex, note that pt/(1 − pt) is
non-increasing and thus τ̇ is non-decreasing. To see that τ̇ is less than 1, note that

τ̇ < 1 i� 1 <
W

ω

r

λ0 + r

pt
1− pt

.

To verify this last property, note that investing at t results in higher expected payo�s
for the agent than learning at t and investing at t+dt unless the bad state is revealed.
That is,

ptW + (1− pt)(−ω) ≥ (1− pt)(1− λ0dt)e−rdt(−ω) + pte
−rdtW.

Reordering terms and taking dt→ 0, we deduce that 1 < W
ω

r
λ0+r

pt
1−pt .
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B Proofs for Section 4.3

Proof of Proposition 2. We �rst prove part (a). Note that the principal's expected
payo� from setting T =∞ equals

ϕ(
W

ω
) =

∫ t∗

0

p0λ
1e−λ

1se
−Rτ t∗W

ω

(s)
V ds+

∫ ∞
t∗

p0λ
1e−λ

1se−RsV ds

where τ t
∗
W
ω

(s) = t∗ − (λ
0

r
)
∫ X
s

1
W
ω

px
1−px

−1
dx. We claim that for all ε > 0, there exists L

such that for all W
ω
> L, ϕ(W

ω
) < ε.

First, notice that since t∗ → ∞ as W
ω
→ ∞, there exists L1 such that for all

W
ω
> L1, ∫ ∞

t∗
p0λ

1e−λ
1se−RsV ds < ε/2.

Now we show that there exists L2 such that for all W
ω
> L2,∫ t∗

0

p0λ
1e−λ

1se
−Rτ t∗W

ω

(s)
V ds <

ε

2
.

To show this, we �rst show that for any δ, there exists L3 such that for all W
ω
> L3,

1
W
ω

px
1−px − 1

< δ,∀x ∈ [0, t∗].

Since px
1−px decreases in x, su�ces to show

1
W
ω

p0
1−p0 − 1

< δ.

This is done by letting L3 = δ+1
δ

2(1−p0)
p0

.

Given this, we now show that for any η, there exists L4 such that W
ω
> L4 implies

e−Rτ(s) < η,∀s ∈ [0, t∗].

To show this, �rst we notice that τ(s) increases in s, so it su�ces to show that there
exists L4 such that W

ω
> L4 implies

e

−R

t∗−λ0r ∫ t∗
0

1
W
ω

px
1−px − 1

dx


< η.
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In other words,

t∗ − λ0

r

∫ t∗

0

1
W
ω

ps
1−ps − 1

ds >
ln η

−R
.

Given what we showed in the previous step, we can �nd L3 such that

1
W
ω

px
1−px − 1

<
r

2λ0
, ∀x ∈ [0, t∗].

Therefore

t∗ − λ0

r

∫ t∗

0

1
W
ω

px
1−px − 1

dx > t∗ − λ0

r

∫ t∗

0

r

2λ0
dx

= t∗ − λ0

r

r

2λ0
t∗

=
t∗

2
→∞

as W
ω
→∞. We have therefore shown that there exists L4 such that W

ω
> L4 implies

e−Rτ(s) < η,∀s ∈ [0, t∗].

Now �nd L4 such that

e−Rτ(s) <
ε

4V p0

,∀s ∈ [0, t∗].

Therefore ∫ t∗

0

p0λ
1e−λ

1se−Rτ(s)V ds <

∫ t∗

0

p0λ
1e−λ

1s ε

4V p0

V ds

= p0λ
1 ε

4V p0

V

∫ t∗

0

e−λ
1s ds

= p0λ
1 ε

4V p0

V · 1

λ1
(1− e−λ1t∗)

= p0
ε

4V p0

V (1− e−λ1t∗)

=
ε

4
(1− e−λ1t∗)

<
ε

2
.

Therefore, for W
ω
> L2 := max{L3, L4}, we have∫ t∗

0

p0λ
1e−λ

1se
−Rτ t∗W

ω

(s)
V ds <

ε

2
.
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Lastly, letting L := max{L1, L2}, we then have

ϕ(
W

ω
) < ε

for W
ω
> L.

Now, note that by setting an optimal deadline T ∈ [0, t∗], the principal's payo�
equals

Φ(
W

ω
) = max

T∈[0,t∗]
Φ(
W

ω
, T )

where

Φ(
W

ω
, T ) =

∫ T

0

p0λ
1e−λ

1se
−RτTW

ω

(s)
V ds+

(
p0e
−λ1T e−RTV + (1− p0)e−λ

0T e−RT (−ν)
)

Note that

Φ(
W

ω
, T ) > p0e

−RT
(

1− e−λ1T
)
V +

(
p0e
−λ1T e−RTV + (1− p0)e−λ

0T e−RT (−ν)
)

= e−RT
(
p0V + (1− p0)e−λ

0T (−ν)
)

Fix any T such that the expression above is strictly positive and equals η > 0. Let
ε = η/2 and take W/ω > L such that ϕ(W/ω) < ε = η/2 and T < t∗. In particular,

Φ(
W

ω
) ≥ η > η/2 ≥ ϕ(

W

ω
)

which proves that there exists some κ̄ such that for all W
ω
> κ̄, T ∈ [0, t∗] results in

higher payo�s than T =∞.
To complete the proof of part (a), note that as W/ω goes to x where x r

λ1+r
p0

1−p0 = 1,
t∗ → 0. In particular,

ϕ(
W

ω
)→

∫ ∞
0

p0λ
1e−λ

1se−RsV ds = p0V
λ1

λ1 +R

whereas

Φ(
W

ω
)→ p0V + (1− p0)(−ν).

Since p0V
λ1

λ1+R
> p0V + (1 − p0)(−ν), there exists κ such that for all W/ω < κ,

ϕ(W/ω) > Φ(W/ω).
To prove part (b), we normalize the principal's expected payo�s by ν and write

ϕ(
V

ν
) =

∫ t∗

0

p0λ
1e−λ

1se
−Rτ t∗W

ω

(s)V

ν
ds+

∫ ∞
t∗

p0λ
1e−λ

1se−Rs
V

ν
ds
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for the principal's payo� when T =∞ and

Φ(
V

ν
, T ) =

∫ T

0

p0λ
1e−λ

1se
−RτTW

ω

(s)V

ν
ds+

(
p0e
−λ1T e−RT

V

ν
+ (1− p0)e−λ

0T e−RT (−1)
)

for the principal payo� when setting T < t∗. Note that as V/ν → 0,

ϕ(
V

ν
)→ 0, Φ(

V

ν
, T )→ −(1− p0)e−λ

0T e−RT

Since Φ is continuous in (V
ν
, T ), there exists η > 0 such that for all V/ν < η,

ϕ(
V

ν
) > max

T∈[0,t∗]
Φ(
V

ν
, T )

and thus it is optimal for the principal to set T =∞.
To complete part (b), de�ne y such that 1 = y R

λ1+R
p0

1−p0 . By de�nition,

ϕ(y) < max
T∈[0,t∗]

Φ(y, T )

where the maximum on the right is attained at T = 0. By continuity, there exists
η̄ < y such that for all V/ν > η̄,

ϕ(
V

ν
) < max

T∈[0,t∗]
Φ(
V

ν
, T )

and the principal sets a deadline T < t∗.

C Proofs for Section 5

Proof of Proposition 3. The principal's constrained maximization problem is as
follows:

max
T ∈<+∪{∞},qτ (·|t),qT (·)

∫ T

0

p0λ
1e−λ

1s
[ ∫ ∞

s

e−Rτqτ (dτ | s)
]
V ds

+

∫ ∞
T

e−RτqT (dτ)
[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]

subject to

W
[ ∫ ∞

t

e−rτqτ (dτ | t)
]
≥ W

[ ∫ ∞
s

e−rτqτ (dτ | s)
]
∀s ≥ t (21)

W
[ ∫ ∞

t

e−rτqτ (dτ | t)
]
≥ W

∫ ∞
T

e−rτqT (dτ),∀t. (22)
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(23)

∫ T

t

ptλ
1 e
−λ1s

e−λ1t
W
[ ∫ ∞

s

e−rτqτ (dτ | s)
]
ds

+

∫ ∞
T

e−rτqT (dτ)
[
pte
−λ1(T−t)W − (1− pt)e−λ

0(T−t)ω
]

≥ max

{[∫ ∞
t

e−rτqτ (dτ | t)
]
·
[
− ω + pt(W + ω)

]
, 0

}
,∀t.

We �x T , ignore condition (21) and (22) and argue that condition (23) should
bind for almost all t < t∗. Suppose the strict inequality holds for all t ∈ A, where A
has positive measure. Let us consider

qετ (· | t) =

{
(1− ε)qτ (· | t) + ε1t, if t ∈ A
qτ (· | t), otherwise.

.

For ε su�ciently small, the strictly inequality still holds at t. For s < t, the incentive
is strengthened. For s > t, incentive is una�ected. Since qετ �rst-order stochastic
dominates qτ and e

−Rτ is decreasing in τ , the principal receives strictly higher payo�
under qετ .

Now let us impose (23) binding for all t < t∗ while letting (22) and (23) hold
for t = T simultaneously. Moreover, for any t ≥ 0, let τ(t) be such that e−rτ(t) =∫∞
t
e−rτqτ (dτ | t) and e−rS =

∫∞
T
e−rτqT (dτ). We then have∫ T

t

ptλ
1 e
−λ1s

e−λ1t
We−rτ(s)ds+ e−rS

[
pte
−λ1(T−t)W − (1− pt)e−λ

0(T−t)ω
]

(24)

= e−rτ(t) ·
[
− ω + pt(W + ω)

]
,∀t ∈ [0, t∗).

e−rS = e−rτ(T ) (25)

(24) and (25) combined give us∫ ∞
t

e−rτq∗τ (dτ | t) = e−rτ(t) = e−r(S−T )e−rτ
T∗(t) ∀t < t∗, (26)

where τT∗ is the optimal deterministic contract given deadline T . It is then easy to
see that q∗τ satis�es the other conditions as well and therefore is feasible. Therefore
it solves the original problem.

Note that any q∗τ that satis�es (26) must not assign probability 1 to {t} for t <
min{t∗, T}. If this is the case, then∫ ∞

0

e−rτq∗τ (dτ | t) = e−rt > e−rτ
T∗ (t) ≥ e−r(S−T )e−rτ

T∗(t),
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a contradiction.
We �rst consider the case where R ≤ r, that is, the principal is more patient than

the agent. The principal's payo� equals

∫ T

0

p0λ
1e−λ

1s
[ ∫ ∞

s

e−Rτq∗τ (dτ | s)
]
V ds+

∫ ∞
T

e−RτqT (dτ)
[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]

≤
∫ T

0

p0λ
1e−λ

1s
[ ∫ ∞

s

e−rτq∗τ (dτ | s)
]R
r
V ds+

[ ∫ ∞
T

e−rτqT (dτ)
]R
r
[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]

=

∫ T

0

p0λ
1e−λ

1s
[
e−r(S−T )e−rτ

T∗(s)
]R
r
V ds+ (e−rS)

R
r

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]

=

∫ T

0

p0λ
1e−λ

1se−Rτ
T∗(s)e−R(S−T )V ds+ e−RS

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]

≤
∫ T

0

p0λ
1e−λ

1se−Rτ
T∗(s)V ds+ e−RT

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]

The �rst inequality is due to Jensen's inequality. The next equality is from (26). We
have thus shown that for any given T , the optimal random contract is at most as
good as the optimal deterministic contract with under the same T .

Now let us consider the case where R > r. We show that for any given T , the
optimal random contract given with the deterministic deadline T is strictly better
than the optimal deterministic contract. To see this, note that the principal's payo�
under this random mechanism equals∫ T

0

p0λ
1e−λ

1s
[ ∫ ∞

s

e−Rτq∗τ (dτ | s)
]
V ds+

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]
e−RT

>

∫ T

0

p0λ
1e−λ

1s
[ ∫ ∞

s

e−rτq∗τ (dτ | s)
]R
r
V ds+

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]
e−RT

=

∫ T

0

p0λ
1e−λ

1s
[
e−rτ

T∗(s)
]R
r
V ds+

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]
e−RT

=

∫ T

0

p0λ
1e−λ

1se−Rτ
T∗(s)V ds+

[
p0e
−λ1TV − (1− p0)e−λ

0Tν
]
e−RT .

To see that the optimal random contract featuring q∗τ and a deterministic deadline
is indeed random, notice that if not, then by (26), q∗τ (t) must assign probability 1 to
τT∗(t) for all t. Then the random contract is identical to τT∗, a contradiction.
Proof of Proposition 4. We �rst consider a relaxed problem. The relaxed problem
maximizes (16) subject to (13)-(15) given T . Suppose that τ and q solve the relaxed
problem. We argue that q(t) = 0 for almost every t ∈ [0, T ]. Suppose that q(t) > 0
for all t ∈ A, where A ⊆ [0, T ] has positive measure. For t /∈ A, de�ne q′(t) = q(t)
and τ(t) = τ ′(t). For t ∈ A, de�ne q′(t) < q(t) (close enough to q′(t)) and τ ′(t) such
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that22

e−rτ
′(t)
(
ptW + (1− pt)(−ω)

)
+ e−rtq′(t) = e−rτ(t)

(
ptW + (1− pt)(−ω)

)
+ e−rtq(t).

This means that when the uninformed agent deviates he gets the same payo� under
both the original and the new contract. In particular, the informed agent at t �nds
contract τ ′ and q′ more attractive than τ and q:

e−rτ
′(t)W + e−rtq′(t) ≥ e−rτ(t)W + e−rtq(t) (27)

with strict inequality for t ∈ A. We now argue that τ ′ and q′ satisfy all the constraints
in the relaxed problem. To verify (13), note that due to (27), the expected payo� that
the uninformed agent gets from truthful revelation under τ ′ and q′ is strictly larger
than under τ and q due to (27)). Thus, since the uninformed agent at t �nds τ ′ and
q′ as attractive as τ and q, (13) holds. Analogously, to verify (15), we note again that

e−rτ
′(t)W + e−rtq′(t) ≥ We−rτ(t) + e−rtq(t) ≥ e−rTW.

It follows that τ ′ and q′ are feasible for the relaxed problem. Since τ ′ ≤ τ and q′ ≤ q
with strict inequality in some set of positive measure, it follows that τ and q cannot
be optimal for the principal.

We can therefore solve the relaxed problem by setting q ≡ 0. Such relaxed problem
has solution τT as we described in Section 4 that satisfy all the constraints in our
original problem (16).
Proof of Proposition 5. We �rst argue part (a). Similar to Lemma 1, equation
(18) implies that τ(t) > t. Moreover, similar to Lemma 2, (18) binds for t < T for
any optimal solution. Taking derivatives, the fact that (18) binds is equivalent to

τ(T ) = T, τ̇(t) =
(1− pt)λ0ω − cer(τ(t)−t)

r(ptW + (1− pt)(−ω))
∀t ≤ T. (28)

We �rst argue that there exists ĉ(T ) > 0 such that for all c < ĉ(T ), any solution τ(t)

to (28) is bounded. To see this, note �rst that τ̇(t) ≤ λ0ω(1−pt)
r(ptW+(1−pt)(−ω))

< 1 and, since

τ(T ) = T , τ(t) ≥ 0 for all t ∈ [0, T ]. Now, from (28),

τ̇(t)e−rτ(t) ≥ −c
r
e−rt

1

(ptW + (1− pt(−ω))

22Note that we can always pick q′(t) < q(t) close enough to q(t) so that

e−rτ(t) +
e−rt − e−rt

ptW + (1− pt)(−ω)
(q(t)− q′(t)) < 1

and thus τ ′(t) is well de�ned.
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and therefore, d
dt

(
e−rτ(t)

)
≤ c e−rt

ptW+(1−pt)(−ω)
≤ c · maxt∈[0,t∗]

e−rt

ptW+(1−pt)(−ω)
. We thus

deduce that

τ(t) ≤ 1

r
ln
(
e−rT − cκT

)
with κ := maxt∈[0,t∗]

e−rt

ptW+(1−pt)(−ω)
. The claim follows by taking ĉ = e−rT

κT
> 0.

De�ne

Φ(τ, t, c) =
(1− pt)λ0ω − cer(τ(t)−t)

r(ptW + (1− pt)(−ω))
.

Being continuously di�erentiable, Φ is a Lispchitz function over any bounded domain.
Theorem 7.4 in (Coddington and Levinson, 1955) implies that the ordinary di�erential
equation (28) has a unique solution τT that therefore solves the relaxed problem.
Moreover, from Theorem 7.4 in (Coddington and Levinson, 1955), any solution τT,c(t)
to (28) (where we emphasize the dependence of the solution on c) is continuous in
(c, t). In particular, since (28) holds, the derivative ∂τ

∂t
is continuous in (c, t). When

c = 0, 0 < ∂τ
∂t
< 1 for all t ∈ [0, T ]. As a result, we take c̄ ∈]0, ĉ[ such that for all

t ∈ [0, T ], τT,c(t) is increasing and its slope is less than 1.
To prove part (b), we note that for c < c̄, τT satis�es (2)-(3)-(4). It remains

to show that τT satis�es (17). To see this, note that for all t ∈ dom(S) and all
S ∈ dom(τT )

∂u〈T,τ
T 〉(t, S)

∂S

= (1− pt)
λ0

e−λ0t
e−rτ

T (S)ω + pt
e−λ

1S

e−λ1t
(−rW )τ̇T (S)e−rτ

T (S)

+(1− pt)
e−λ

0S

e−λ0t
(rω)τ̇T (S)e−rτ

T (S) − ce−rS
(
pt
e−λ

1S

e−λ1t
+ (1− pt)

e−λ
0S

e−λ0t

)
which equals 0 i� for all t ∈ [0, T ]

τ̇T (t) =
λ0ω(1− pt)− cer(τ(t)−t)

r(ptW + (1− pt)(−ω))
.

Since τT satis�es (19), ∂u〈T,τ
T 〉(t,S)
∂S

= 0. Thus (17) holds and τT solves the dynamic
delegation problem.

To prove part (c), note that the slope of τ T̂ is less than 1. Since τT (T ) = T , and

τ T̂ (T̂ ) = T̂ , it follows that τT (T ) < τ T̂ (T ).

We now prove that τ T̂ (t) > τT (t) for all t ∈ [0, T ]. Otherwise, there exists t ∈ [0, T ]

such that τ T̂ (t) ≤ τT (t). Take t̄ = max{t ∈ [0, T ] | τ T̂ (t) ≤ τT (t)}, which exists since

τ T̂ and τT are continuous and [0, T ] is compact. Since τ T̂ (T ) > τT (T ), t̄ < T and

for all t ∈ (t̄, T ], τ T̂ (t) > τT (t). Moreover, τ T̂ (t̄) = τT (t̄) since otherwise t̄ would not

be the greatest time at which τ T̂ is below τT . There must exists t′ ∈ [t̄, T ] such that
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τ̇ T̂ (t′) > τ̇T (t′). Otherwise, for all t′ ∈ [t̄, T ],

τ̇ T̂ (t′) ≤ τ̇T (t′) (29)

and thus

τ T̂ (T ) = τ T̂ (t̄) +

∫ T

t̄

τ̇ T̂ (t′)dt′ ≤ τT (t̄) +

∫ T

t̄

τ̇T (t′)dt′ = τT (T )

where the inequality follows from (29). This contradicts the fact that τ T̂ (T ) > τT (T ).

Take t′ ∈ [t̄, T ] such that τ̇ T̂ (t′) > τ̇T (t′). Since both τ T̂ and τT satisfy (28), it follows

that τ T̂ (t′) < τT (t′). This contradicts the fact for all t ∈ [t̄, T ], τ T̂ (t) ≥ τT (t).
Proof of Lemma 4. To prove part (a), we will show that v(p, t) =
max{e−r(τ(t)−t)(pW + (1 − p)(−ω)), 0} satis�es the HJB equation. The result will
follow after we verify that each of the terms inside the max is less than or equal to 0
(since by de�nition of v the �rst term is actually 0). Since τ̇(t) ≥ 0 and v(p, t) ≥ 0

vt(p, t)− rv(p, t) = −r(τ̇(t)− 1)v(p, t)− rv(p, t) = −rτ̇(t)v(p, t) ≤ 0.

We also note that the condition

−c+pλ1e−r(τ(t)−t)W−(r+pλ1+(1−p)λ0)v(p, t)+vp(p, t)(λ
0−λ1)p(1−p)+vt(p, t) ≤ 0

can be written as

−c+ pλ1e−r(τ(t)−t)W − (r + pλ1 + (1− p)λ0)e−r(τ(t)−t)(pW + (1− p)(−ω))

+ e−r(τ(t)−t)(W + ω)(λ0 − λ1)p(1− p) + (pW + (1− p)(−ω))(−r)(τ̇(t)− 1)e−r(τ(t)−t)

≤ 0.

This is equivalent to

τ̇(t) ≥ ωλ0(1− p)− cer(τ(t)−t)

r(pW + (1− p)(−ω))
. (30)

Since τ satis�es (19) and p ≥ pt, (30) holds. It follows that v(p, t) = max{pW +
(1− p)(−ω), 0} satis�es the HJB equation. The fact that v(p, t) is actually the value
function for the agent's problem follows from a veri�cation theorem.
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We now prove part (b). Since τ is de�ned so that (18) binds,∫ T

t

ptλ
1 e
−λ1s

e−λ1t

(
e−rτ(s)W − c1− e−rs

r

)
ds+

∫ T

t

(1− pt)λ0 e
−λ0s

e−λ0t
(−c)1− e−rs

r
ds

+ pt
e−λ

1T

e−λ1t
e−rτ(T )W + (1− pt)

e−λ
0T

e−λ0t
e−rτ(T )(−ω)− c1− e−rT

r

(
pt
e−λ

1T

e−λ1t
+ (1− pt)

e−λ
0T

e−λ0t

)
= e−rτ(t)

(
ptW + (1− pt)(−ω)

)
− c1− e−rt

r
.

This equality can be rewritten as∫ T

t

ptλ
1 e
−λ1s

e−λ1t

(
e−r(τ(s)−t)W − c1− e−r(s−t)

r

)
ds+

∫ T

t

(1− pt)λ0 e
−λ0s

e−λ0t
(−c)1− e−r(s−t)

r
ds

+ pt
e−λ

1T

e−λ1t
e−r(τ(T )−t)W + (1− pt)

e−λ
0T

e−λ0t
e−r(τ(T )−t)(−ω)− c1− e−r(T−t)

r

(
pt
e−λ

1T

e−λ1t
+ (1− pt)

e−λ
0T

e−λ0t

)
= e−r(τ(t)−t)

(
ptW + (1− pt)(−ω)

)
.

This means that at belief p = pt,

v(pt, t) =

∫ T

t

ptλ
1 e
−λ1s

e−λ1t

(
e−r(τ(s)−t)W − c1− e−r(s−t)

r

)
ds+

∫ T

t

(1− pt)λ0 e
−λ0s

e−λ0t
(−c)1− e−r(s−t)

r
ds

+pt
e−λ

1T

e−λ1t
e−r(τ(T )−t)W + (1− pt)

e−λ
0T

e−λ0t
e−r(τ(T )−t)(−ω)− c1− e−r(T−t)

r

(
pt
e−λ

1T

e−λ1t
+ (1− pt)

e−λ
0T

e−λ0t

)
.

In other words, v(pt, t) is the discounted expected payo� the agent gets by in-
curring e�ort cost and being truthful over [t, T ]. This proves that at (pt, t), it
is optimal to make the learning e�ort and declare truthfully. When p > pt,
v(p, t) = e−r(τ(t)−t)(pW + (1 − p)(−ω)) and therefore it is optimal to declare the
good signal.
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Supplementary Material [Not for publication]
The supplementary material consists of two sections. Section D justi�es our mech-

anism design formulation. Section E explores additional variations of the main model:

Section E.1 discusses the implications of an outside option for the agent; Section E.2

shows that allowing transfers from the agent to the principal aligns the incentives;

Section E.3 extends the information structure to no news is no news and no news is

good news.

D Formulation of Mechanism Design Problem

First we de�ne a contract. To do this, we �rst need some terminology. A pub-

lic history at t is hρt := {(mτ , yτ )}0≤τ<t ∈ Hρ
t . It contains the sequence of mes-

sages and investment decisions strictly before t. A private history at t is hαt :={
(mτ , yτ )}0≤τ<t, {hτ}0≤τ≤t

}
∈ Hα

t . It contains the sequence of signal, messages and

investment decisions strictly before t as well as the signal observation at t. The

message space at time t, Mt : Hρ
t → 2{0,1,∅}, is de�ned as follows: ∀t,

Mt(h
ρ
t ) =

{mτ}, if ∃τ < t s.t. mτ 6= ∅ or yτ = 1

{0, 1, ∅}, otherwise.

We usemt to denote the message sequence up to and including t: mt = {mτ}0≤τ≤t.

Through abusing of notation, we say that mt = ∅ if mτ = ∅ for all 0 ≤ τ ≤ t.

A contract Γ is a function mapping
{
{mτ}0≤τ≤t, {yτ}0≤τ<t

}
to yt ∈ {0, 1} with

the following irreversibility property: for any t, if yτ = 1 for some 0 ≤ τ < t, then

yt = 1. From now on, we keep in mind this property and omit the dependence of yt

on {yτ}0≤τ<t and simply write yt = y(mt).

Our next goal is to simplify the principal's problem. To do this, we �rst show that

any contract can be represented by three components: a �deadline� T ∈ <+ ∪ {∞},
a function τ0(·) which maps the arriving time of the �rst 0-message to an investment

time <+ ∪ {∞}, and a function τ1(·) which maps the arriving time of the �rst 1-

message to an investment time <+ ∪ {∞}.
Let us de�ne T := inf{t : mt = ∅, y(mt) = 1}. It follows that for any t such that

mt = ∅, if t < T , then y(mt) = 0; otherwise y(mt) = 1. In other words, T pins down

the principal's action for an empty message history of any length. Now let us consider
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mt 6= ∅. We de�ne γ(mt) := min{τ : mτ 6= ∅}, the time that a non-empty message

history jumps from ∅ to 0 or 1. Then by the de�nition of Mt, anym
t 6= ∅ is completely

characterized by γ(mt), the value of mt ∈ {0, 1} and the value of t. For each x ≥ 0,

let us de�ne τ0(x) = inf{t : y(mt) = 1,mt = 0, γ(mt) = x}. Therefore, for each mt for

whichmt = 0 and t < τ0(γ(mt)), we have y(mt) = 0; for eachmt for whichmt = 0 and

t ≥ τ0(γ(mt)), y(mt) = 1. Similarly, τ1(·) := inf{t : y(mt) = 1,mt = 1, γ(mt) = x}
pins down y(mt) for all mt 6= ∅ and mt = 1. Therefore τ0(·) and τ1(·) pin down the

principal's action at any non-empty message history. Note that since the in�mum of

an empty set is +∞, we allow the case that T = ∞, or τi(x) = ∞ for i = 0, 1 for

some x.

Right now the domains of τ0(·) and τ1(·) are both [0,∞). We argue that it su�ces

to restrict them to [0, T ] whenever T <∞. In other words, it is redundant to de�ne

the investment time for a history mt 6= ∅ for which γ(mt) > T . The argument is

simple: if for some mt we have γ(mt) > T , then it must be the case that mT = ∅ and
y(mT ) = y(mt) = 1. We sum up our discussion in the following proposition:

Proposition 7 A contract belongs to one of the two following groups:

1. T <∞, τ0, τ1 : [0, T ]→ [0,∞],

2. T =∞, τ0, τ1 : [0, T )→ [0,∞].

Now we have demonstrated that a contract consists of three components T , τ0(·)
and τ1(·). We are now ready to state the principal's objective function:

∫ T

0

[
p0λ

1e−λ
1se−Rτ1(s)V + (1− p0)λ0e−λ

0se−Rτ0(s)(−ν)
]
ds

+
[
p0e
−λ1T + (1− p0)e−λ

0T
]
e−RT

[
− ν + pT (V + ν)

]
For the constraints faced by the principal, �rst note that the principal's actions

must be feasible, therefore τi(x) ≥ x for all x. For the incentive compatibility con-

straints of the agent, we require that at any on- or o�-path history, the agent prefers

to tell the truth from then on. Hence we discuss the possible histories hαt faced by

the agent at which Mt is not a singleton:

1. Suppose that ht contains signal 1. Then choosing mt = 1 is preferred by the

agent to:
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(a) choosing mt = 0: e−rτ1(t)W ≥ e−rτ0(t)W ;

(b) choosing mt = ∅ andms = 1 for some s > t: e−rτ1(t)W ≥ e−rτ1(s)W , ∀s > t;

(c) choosing mt = ∅ andms = 0 for some s > t: e−rτ1(t)W ≥ e−rτ0(s)W , ∀s > t;

(d) choosing ms = ∅ for all s ≥ t.

That is,

(a) τ1(t) ≤ τ0(t), ∀t;

(b) τ1(t) ≤ τ1(s), ∀s > t;

(c) τ1(t) ≤ τ0(s), ∀s > t;

(d) τ1(t) ≤ T , ∀t.

2. Suppose that ht contains signal 0. Then choosing mt = 0 is preferred by the

agent to:

(a) choosing mt = 1: e−rτ0(t)(−ω) ≥ e−rτ1(t)(−ω);

(b) choosing mt = ∅ and ms = 0 for some s > t: e−rτ0(t)(−ω) ≥ e−rτ0(s)(−ω),

∀s > t;

(c) choosing mt = ∅ and ms = 1 for some s > t: e−rτ0(t)(−ω) ≥ e−rτ1(s)(−ω),

∀s > t;

(d) choosing ms = ∅ for all s ≥ t.

That is,

(a) τ0(t) ≥ τ1(t), ∀t;

(b) τ0(t) ≥ τ0(s), ∀s > t;

(c) τ0(t) ≥ τ1(s), ∀s > t;

(d) τ0(t) ≥ T , ∀t.

3. Suppose that ht = ∅. Then truth-telling forever from now on maximizes the

agent's expected payo�. That is, the agents expected payo� from using the
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truth-telling strategy given that ht = ∅

V (t) =
(∫ T

t

e−λ
1s−rτ1(s)ds

)
ptλ

1e(r+λ1)tW (31)

+
(∫ T

t

e−λ
0s−rτ0(s)ds

)
(1− pt)λ0e(r+λ0)t(−ω) (32)

+ pte
(r+λ1)(t−T )W + (1− pt)e(r+λ0)(t−T )(−ω) (33)

satis�es

U(t) = max

{
e−r[τ1(t)−t]

[
− ω + pt(W + ω)

]
, e−r[τ0(t)−t]

[
− ω + pt(W + ω)

]
,

e−rdtptλ
1dte−r[τ1(t+dt)−t−dt]W + e−rdt(1− pt)λ0dte−r[τ0(t+dt)−t−dt](−ω)

+ e−rdt
[
1− ptλ1dt− (1− pt)λ0dt

]
U(t+ dt)

}
.

The �rst and second term denote the agent's expected payo� if he chooses

mt = 1 and mt = 0, respectively. Both actions essentially end the game and

there is no need to specify future actions. The last term denotes the agent's

expected payo� if he chooses mt = ∅ and the optimal action at t+ dt. The �rst

component is the agent's payo� if he gets a 1-signal during (t, t + dt). The IC

conditions in 1 ensures that the optimal action is to choose mt+dt = 1 in this

case, which leads to an investment time τ1(t + dt). The second component is

the agent's payo� if he gets a 0-signal during (t, t + dt). The third component

is the agent's payo� if he receives no signal during (t, t+ dt).

The next lemma simpli�es the incentive condition at ht = ∅.

Lemma 5 Suppose that a contract < T, τ0, τ1 > satis�es IC at any history hαt for

which ht 6= ∅. Moreover, suppose that at hαt for which ht = ∅, the following holds:

e−rtV (t) ≥ max

{
e−rτ0(t)

[
ptW + (1− pt)(−ω)

]
, e−rτ1(t)

[
ptW + (1− pt)(−ω)

]}
.
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Then, the strategy of truth-telling at every history also maximizes the agent's expected

payo� at any hαt for which ht = ∅.

Proof. Fix an arbitrary hαt for which Mt(h
ρ
t ) = {0, 1, ∅} and ht = ∅. Let σ∗ denote

the strategy of truth-telling at every history, whenever doing so is possible. Let σ

denote an alternative strategy such that either σ(hαt ) 6= σ∗(hαt ), or there exists a

concatenation history of hαt , h
α
s , such that s > t and σ(hαs ) 6= σ∗(hαs ).

If σ(hαt ) 6= ∅, then by inequality 5, σ∗ renders higher payo� than σ.

If σ(hαt ) = ∅, then take a concatenation history of hαt for which σ∗(hαs ) 6= σ(hαs ).

Note that at hαs , mτ = ∅ for all τ < s; otherwise Ms(h
ρ
s) is a singleton. Moreover,

yτ = 0 for all τ < s; otherwise a decision is already made at T and Ms(h
ρ
s) is again

a singleton. Therefore the agent's cumulative payo� during [0, s) equals 0 for both

σ∗ and σ. Now, if hs 6= ∅, σ∗ renders higher payo� since the contract is incentive

compatible at such a history. If hs = ∅, then σ∗(hαs ) = ∅ while σ(hαs ) ∈ {0, 1}. By

inequality 5, σ∗ still renders higher payo�. We have thus shown that σ∗ renders higher

payo� at any future (on- or o�-path) history hαs for which σ∗ and σ di�er. Therefore

σ∗ renders higher expected payo� than σ at the information set hαt .

Now we will characterize the optimal contract. First we notice that any incentive

compatible optimal contract < T
∗
, τ ∗0 , τ

∗
1 > must have τ ∗0 =∞ almost surely.

Proposition 8 Given an incentive compatible optimal contract < T
∗
, τ ∗0 , τ

∗
1 >, let us

de�ne A := {t : τ ∗0 (t) <∞}. Then A has measure 0.

Proof. First we notice that if T
∗

=∞, then IC requires that τ ∗0 (t) =∞ for all t. So

for the rest of the proof let us assume that T
∗
<∞. By way of contradiction, suppose

that A has positive measure. Then, the part of the principal's payo� involving τ ∗0 (·)
can be rewritten as:∫ T

∗

0

e−Rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds

=

∫
A

e−Rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds+

∫
[0,T

∗
]\A

e−Rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds

=

∫
A

e−Rτ
∗
0 (s)(−ν)(1− p0)λ0e−λ

0s ds

< 0
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Let t be such that ptW+(1−pt)(−ω) = 0. We will propose an alternative contract

depending on whether T
∗
is greater or smaller than t.

Case 1. T
∗ ≤ t

Consider an alternative contract < T
∗
, τ̃0, τ

∗
1 >, where

τ̃0(s) =∞,∀s

Since the principal's payo� involving τ̃0 is 0, this contract strictly increases the

principal's payo�. Now we will show that < T
∗
, τ̃0, τ

∗
1 > is incentive compatible,

contradicting to < T
∗
, τ ∗0 , τ

∗
1 > being a solution.

It is obvious that the IC conditions when ht 6= ∅ (i.e. cases 1 and 2) are still

satis�ed for the new contract. For the case when ht = ∅, notice that under the new
contract, the agent's payo� from truth-telling forever from time t on is[

pte
−λ1(T

∗−t) + (1− pt)e−λ
0(T
∗−t)
]
e−rT

∗
[
pT ∗W + (1− pT ∗)(−ω)

]
+

∫ T
∗

t

(1− pt)λ0e−λ
0(s−t)e−rτ

∗
0 (s) · 0 ds+

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≥
[
pte
−λ1(T

∗−t) + (1− pt)e−λ
0(T
∗−t)
]
e−rT

∗
[
pT ∗W + (1− pT ∗)(−ω)

]
+

∫ T
∗

t

(1− pt)λ0e−λ
0(s−t)e−rτ

∗
0 (s)(−ω) ds+

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≥
[
ptW + (1− pt)(−ω)

]
e−rτ

∗
1 (t)

≥ 0

The second inequality follows from the the fact that the old contract satis�es IC.

Therefore truth-telling forever from t on is preferred to lying that mt = 1. The last

inequality follows because for any t ≤ T
∗ ≤ t, ptW + (1 − pt)(−ω) ≥ 0. Therefore

truth-telling forever from t on is preferred to lying that mt = 0. We have just

established that under the new contract, truth-telling forever from t on is preferred

to lying at t. By Lemma 5, this ensures that the new contract is incentive compatible.

Case 2. T
∗
> t.

Since pt decreases in t, pT ∗W+(1−pT ∗)(−ω) < 0. Consider an alternative contract

< T̃ , τ̃0, τ̃1 >, where

T̃ =∞, τ̃0(s) =∞,∀s
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and

τ̃1(t) =

τ ∗1 (t) if t ≤ T
∗

t otherwise.

The agent's payo� under this contract equals∫ T
∗

0

(1− p0)λ0e−λ
0s · 0 ds+

∫ T
∗

0

p0λ
1e−λ

1se−rτ
∗
1 (s)W ds

+
[
p0e
−λ1T ∗ + (1− p0)e−λ

0T
∗]
·
∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−T ∗)e−rsW ds

>

∫ T
∗

0

(1− p0)λ0e−λ
0se−rτ

∗
0 (s) · (−ω) ds+

∫ T
∗

0

p0λ
1e−λ

1se−rτ
∗
1 (s)W ds

+
[
p0e
−λ1T ∗ + (1− p0)e−λ

0T
∗]
· e−rT

∗[
pT ∗W + (1− pT ∗)(−ω)

]
.

The inequality follows because∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−T ∗)e−rsW ds > 0 > e−rT

∗[
pT ∗W + (1− pT ∗)(−ω)

]
and A has positive measure by assumption. Now we show the new contract is incentive

compatible. First, it is easy to see that at ht 6= ∅ and t ≤ T
∗
, IC are satis�ed. Second,

at any t > T
∗
> t∗, the interests of the principal and the agent are aligned. Therefore

the �rst-best action is incentive compatible. Lastly, at any ht = ∅ and t ≤ T
∗
, the

agent's payo� if he is truth-telling since then on equals

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds+

∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−T ∗)e−rsW ds ≥ 0.

Therefore the payo� of truth-telling is greater than the payo� of lying that mt = 0.
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On the other hand, the payo� of lying that mt = 1 is[
ptW+(1− pt)(−ω)

]
e−rτ

∗
1 (t)

≤
[
pte
−λ1(T

∗−t) + (1− pt)e−λ
0(T
∗−t)
]
e−rT

∗[
pT ∗W + (1− pT ∗)(−ω)

]
+

∫ T
∗

t

(1− pt)λ0e−λ
0(s−t)e−rτ

∗
0 (s)(−ω) ds+

∫ T
∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≤
∫ T

∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds

≤
∫ T

∗

t

ptλ
1e−λ

1(s−t)e−rτ
∗
1 (s)W ds+

∫ ∞
T
∗
pT ∗λ

1e−λ
1(s−t)e−rsW ds,

which is the agent's payo� of truth-telling. The �rst inequality follows because the

contract < T
∗
, τ ∗0 , τ

∗
1 > is incentive compatible. The second inequality follows because

pT ∗W +(1−pT ∗)(−ω) < 0. Applying Lemma 5 again, we know that the new contract

is incentive compatible.

It is easy to argue then that

Proposition 9 Given an incentive compatible optimal contract < T
∗
, τ ∗0 , τ

∗
1 > for

which T
∗
<∞,

τ ∗0 (t) =∞, ∀t < T
∗
.

Proof. Suppose that τ ∗0 (t) <∞ for some t < T
∗
. Then hαt which includes a 0-signal,

the agent could deviate to mτ = ∅ for all t ≤ τ < s and ms = 0 for some s > t. By

Proposition 8, such s must exist.

We have shown that τ ∗0 (t) = ∞ for all t with the possible exception of τ ∗0 (T
∗
)

when T
∗
< ∞. We set τ0(T

∗
) = T

∗
automatically whenever T

∗
< ∞. This makes

sure that for any T
∗
< ∞, truth-telling is incentive-compatible at T

∗
and at t < T

∗

and ht 6= ∅.
Now we are ready to rewrite the principal's constrained maximization problem as

follows:

max
T∈<+∪{∞},τ(·)

∫ T

0

pλ1e−λ
1se−Rτ(s)V ds+

[
pe−λ

1T + (1−p)e−λ0T
]
e−RT

[
−ν+pT (V +ν)

]
(34)

subject to

τ(t) ≥ t ∀t ∈ [0, T ]; (35)
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τ(s) ≥ τ(t) ∀s ≥ t; (36)

τ(t) ≤ T ∀t ∈ [0, T ]; (37)

∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

[
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

]
≥ max

{
e−rτ(t)

[
− ω + pt(W + ω)

]
, 0

}
,∀t ∈ [0, T ).

E Other Variations

E.1 Agent Has Outside Option

We now assume that the agent has the ability to costlessly withdraw investment after

it is approved and before it is implemented. Since the uninformed agent could lie that

he has received a good signal at t and later withdraw upon a bad signal, stronger

incentives need to be provided. We show that the optimal contract features a �xed

investment time.

Proposition 10 Suppose that the agent can withdraw after approval.

1. Suppose T < t∗. Then τT (t) = T for all t ≤ T .

2. Suppose T ≥ t∗. Then τT (t) = t∗ for all t ≤ t∗.

This result shows that when the agent can withdraw , the contract features an

extreme form of delay as now even after a good signal the investment is made at

T < t∗ or only after incentives are aligned (T ≥ t∗). Thus, the main features of our

main model (decreasing delays, tradeo� between how much information is acquired

and how e�ciently information is used) remain in the model with outside options. 23

23When the agent has an outside option, random contracts may be useful for the principal as they
allow a more severe punishment when the uninformed agent lies. Yet, whether random contracts
can be optimal is unclear as in the natural case in which R << r the principal strictly prefers
deterministic contracts (as shown in Section 5).
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Proof of Proposition 10. The principal's problem is formulated as follows:

max
T∈<+∪{∞},τ

∫ T

0

p0λ
1e−λ

1se−Rτ(s)V ds+
[
p0e
−λ1T +(1−p0)e−λ

0T
]
e−RT

[
−ν+pT (V +ν)

]
subject to

τ(t) ≥ t (38)

τ non-decreasing (39)

τ(t) ≤ T (40)

∫ T

t

ptλ
1e−λ

1(s−t)e−rτ(s)Wds+
[
pte
−λ1(T−t)e−rTW + (1− pt)e−λ

0(T−t)e−rT (−ω)
]
(41)

≥ max

{
e−rτ(t)

[
ptW + (1− pt)e−λ

0(τ(t)−t)(−ω)
]
, 0

}
.

We �rst consider the relaxed problem by �xing T and ignoring (39) and (40).

Notice that by the same argument as the main model, (41) binds for almost all t. We

impose (41) binding for all t ∈ [0,min{t∗, T}]:∫ T

t

λ1e−λ
1se−rτ(s)Wds+

(
e−λ

1T e−rTW +
1− pt
pt

e(λ0−λ1)te−λ
0T e−rT (−ω)

)
= e−λ

1te−rτ(t)
[
W +

1− pt
pt

e−λ
0(τ(t)−t)(−ω)

]
Taking derivatives and using the fact that d

dt

(
1−pt
pt

)
= (λ1 − λ0)1−pt

pt
, we deduce

that

−λ1e−rτ(t)−λ1tW = We−rτ(t)−λ1t[−rτ̇(t)− λ1]− ω(λ1 − λ0)
1− pt
pt

e−rτ(t)−λ1t−λ0(τ(t)−t)

− ω1− pt
pt

e−rτ(t)−λ1t−λ0(τ(t)−t)[−rτ̇(t)− λ1 − λ0τ̇(t) + λ0].

That is,

rτ̇(t)W = ω
1− pt
pt

e−λ
0(τ(t)−t)(r + λ0)τ̇(t).
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Suppose τ̇(t) 6= 0. Then we have

ptrW = ω(1− pt)e−λ
0(τ(t)−t)(r + λ0).

However, since t ≤ t∗ and λ1 > λ0,

W

ω

r

λ0 + r

pt
1− pt

>
W

ω

r

λ1 + r

pt
1− pt

> 1.

Therefore

ptrW > ω(λ0 + t)(1− pt) ≥ ω(1− pt)e−λ
0(τ(t)−t)(r + λ0),

a contradiction. Therefore τ̇(t) = 0 for all t ≤ min{t∗, T}. By the same argument

before, the optimal contract given any T has τT (t) = min{t∗, T} for t ≤ min{t∗, T}.

E.2 Transfers

In this subsection, we show that transfers can align the agent's incentives. A contract

with unlimited transfers is a tuple 〈T, τ, F, q〉 where T ∈ <+ ∪ {∞} and τ(·) are as

in Section 3, while F ∈ < is a �xed amount paid from the agent to the principal at

t = 0 and q ∈ < is a transfer from the agent to the principal whenever a decision is

made. A contract with unlimited transfers allows for payments at the beginning of

the relationship and whenever a decision is made and it rules out schemes in which

transfers depend on time.

Consider the problem of maximizing the sum of the principal's and agent's pay-

o�s under the assumption that players are equally patient. That is, R = r. This

problem is also a stopping time problem in which the investment is made at t = 0

i� V+W
ν+ω

r
λ1+r

p0
1−p0 > 1. Assume that in the policy that maximizes the sum of payo�s,

investment occurs only after a good signal is observed. This policy results in total

payo�s equal to p0(V +W ) λ1

λ1+r
. We claim that the principal can achieve this �rst-best

payo� by designing a contract with transfers.

To see this, set q > 0 such that W−q
ω+q

r
λ1+r

p0
1−p0 = 1. This means that the principal

charges a tax q to the investment decision such that the agent is indi�erent between

investing at t = 0 and investing after a good signal. The principal also sets T =∞ and
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τ(t) = t. The agent facing this contract with transfers has incentives to truthfully

reveal his information. Finally, the principal charges F = p0(W − q) λ1

λ1+r
at the

beginning of the relationship. By o�ering 〈T, τ, F, q〉, the principal gets expected

payo�s equal to

F + p0(V + q)
λ1

λ1 + r
= p0(V +W )

λ1

λ1 + r
.

We have therefore proven the following result.

Proposition 11 The principal can achieve �rst best payo�s by using a contract with

unlimited tranfers.

This result is similar to others in contract theory showing that a principal can

implement an e�cient allocation and extract the whole surplus using unrestricted

transfers (Bolton and Dewatripont, 2005). The key driver behind all these results is

the fact that the contract is signed under symmetric information and that payments

allow for arbitrary utility transfers.

E.3 No News Is No News and No News Is Good News

In the absence of a signal, the evolution of the agent's belief (pt)t≥0 satis�es

dpt
dt

= −(λ1 − λ0)pt(1− pt).

We �rst consider the case when λ0 = λ1; that is, dpt
dt

= 0. In this case, the agent's

belief remains constant if no signal has arrived, and jumps to 0 or 1 at the �rst signal.

Therefore the uninformed agent is never indi�erent between investing and waiting to

invest after a good signal and we de�ne t∗ =∞.

The single-player problem is solved identically as that in Section 2. The dynamic

delegation problem and the relaxed problem are set up in the same way. When solving

the relaxed problem, since t∗ =∞, we only need to consider the T ≤ t∗ case. Since it

is infeasible to set T =∞ for any combination of parameters that satisfy Assumption

1, the optimal contract always features a deadline T and the corresponding contract

τT is solved for in the same way as in Section 4.2.

When λ0 > λ1, the agent's belief drifts up as time goes on. Suppose that the agent

observes the signal and decides whether to invest at each point in time. Following

arguments similar to those in Section 2, it is relatively simple to show that there exists
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p∗ such that the agent invests i� pt ≥ p∗. Analogously, there exists q∗ such that the

principal would make the decision i� pt ≥ q∗.24 We assume that p∗ < p0 < q∗. This

means that at time 0, the agent would like to invest whereas the principal would like

to wait for information. In contrast to Section 2, the assumption λ0 > λ1 now implies

that there exists t∗ such that if no signal has been received, the principal would like

to invest at any t > t∗. In particular, for t > t∗, the principal's and the agent's

preferences surely coincide as both would like to invest. This implies that there will

always be a deadline T ≤ t∗.

We �nd the contract 〈T, τ〉 that solves (1) under constraints (2)-(3)-(4)-(5). All

these constraints remain relevant in this setup as they capture feasibility and truth-

telling incentives that need to be provided regardless of the direction followed by the

belief path.

The solution method is similar to Section 4. We now sketch and discuss the main

steps.

Lemma 6 Let 〈T, τ〉 satisfy (2) and (5). Then, τ(t) > t, for all t ≤ T .

This result is similar to Lemma 1. The main di�erence is that now the uninformed

agent prefers to invest for all t ∈ dom(τ) and, as a result, all the investment times

need to be distorted.

We also solve the dynamic delegation problem for �xed T and, as in Section 4, it

will be convenient to formulate the following relaxed problem:

max
τ(·)

∫ T

0

p0λ
1e−λ

1se−Rτ(s)V ds+
(
p0e
−λ1T e−RTV + (1− p0)e−λ

0T e−RT (−ν)
)

(42)

subject to

τ(T ) ≥ T (43)∫ T

t

ptλ
1 e
−λ1s

e−λ1t
e−rτ(s)Wds+

(
pt
e−λ

1T

e−λ1t
e−rTW + (1− pt)

e−λ
0T

e−λ0t
e−rT (−ω)

)

≥ max
{
e−rτ(t)(− ω + pt(W + ω)), 0

}
∀t ≤ T. (44)

24Note that the thresholds p∗ and q∗ in this subsection do not coincide with the thresholds derived
in Section 2.
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Lemma 7 Let τ ∗ satisfy (43)-(44). Then, τ ∗ solves the relaxed problem (42) i� (44)

binds for almost every t ∈ [0, T ].

This lemma is similar to Lemma 2. Intuitively, if the constraint were slack, the

principal could slightly reduce the investment time and improve her expected payo�s.

A solution to the relaxed problem is then found by imposing (44) binding over

[0, T ]. Since −ω + pt(W + ω) > 0 for all t ≥ 0, (44) binding at T implies τ(T ) = T .

Using Lemma 3, we can solve for the binding constraint (44) by simply solving the

system

τ(T ) = T, τ̇(t) = (
λ0

r
)

ω

W pt
1−pt − ω

t < T.

The solution τT to this system is given by (12). This function is concave and its slope

is less than 1. As it satis�es all the constraints of the dynamic delegation problem, τT

actually solves the dynamic delegation problem for �xed T . As T increases, so does

τT (t) and thus the principal needs to distort more investment decisions. The optimal

T is chosen as follows. Over T ≥ t∗ the principal should optimally set T = t∗ since

for all t > t∗, the principal is optimistic enough to invest without any news. Over

T < t∗, the solution solves the tradeo� characterized in Proposition 2.
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