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Abstract

Value at Risk (VaR) is a measure of the maximum potential change in value of a

portfolio of financial assets with a given probability over a given time horizon. VaR

became a key measure of market risk since the Basle Committee stated that banks should

be able to cover losses on their trading portfolios over a ten-day horizon, 99 percent of the

time. A common practice is to compute VaR by assuming that changes in value of the

portfolio are normally distributed, conditional on past information. However, assets returns

usually come from fat-tailed distributions. Therefore, computing VaR under the assumption

of conditional normality can be an important source of error. We illustrate this point for

some return series key to the Chilean financial market by resorting to extreme value theory

(EVT) and GARCH-type models. In addition, we show that dynamic estimation of

empirical quantiles can also give more accurate VaR estimates than quantiles of a standard

normal.
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I Introduction

Value at Risk (VaR) is a popular measure of market risk (see, for example, Jorion,

2001), whose origins date back to the late 1980’s at J.P. Morgan. VaR answers the question

about how much we can lose with a given probability over a certain time horizon. It

became a key measure of market risk since the Basle Committee stated that banks should

be able to cover losses on their trading portfolios over a ten-day horizon, 99 percent of the

time. Financial firms usually use VaR for internal risk control considering a one-day

horizon and a 95 percent confidence level.

More formally, VaR measures the quantile of the projected distribution of gains and

losses over a given time horizon. If α is the selected confidence level, VaR is the 1−α

lower-tail level. In practical applications, computation of VaR involves choosing α, the

time horizon, the frequency of the data, the cumulative distribution function of the price

change of a financial position over the time horizon under consideration, and the amount of

the financial position.

The assumption made about the cumulative distribution function of the price change

is key to VaR calculation. Some available methods are the following: Riskmetrics, the

GARCH approach, quantile estimation, and extreme value theory (see, for example, Tsay,

2001, chapter 7). Riskmetrics assumes that the continuously compounded daily return of a

portfolio follows a conditional normal distribution. The GARCH approach resorts to

conditional heterocedastic models. If innovations are assumed normal, quantiles to compute

VaR can be easily obtained from the standard normal distribution. Alternatively, if

innovations are assumed Student-t with υ degrees of freedom, standardized quantiles are

used. Quantile estimation provides a non-parametric estimate of VaR. It does not make any

assumption of the distribution of the portfolio return. There are two types of quantile

methods: empirical and quantile regression. Finally, extreme value theory (EVT) has a goal

to quantify the probabilistic behavior of unusually large losses, and it has arisen as a new
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methodology to analyze the tail behavior of stock returns (see, for example, McNeil and

Frey, 2000; Zivot and Wang, 2003, chapter 5).

Traditional parametric and non-parametric methods work well in areas of the

empirical distribution where there are many observations, but they provide with a poor fit

to the extreme tails of the distribution. This is evidently a disadvantage because

management of extreme risk calls for estimation of quantiles and tail probabilities that

usually are not directly observable from the data. EVT focuses on modeling the tail

behavior of a loss distribution using only extreme values rather than the whole data set. In

addition, EVT offers a parametric estimate of tail distribution. This feature allows for some

extrapolation beyond the range of the data.

In this paper, we follow McNeil and Frey (2000) and estimate assets volatility with

GARCH-type models and compute tails distributions of GARCH innovations by EVT. This

allows us to compute conditional quantiles (i.e., VaR), and compare the EVT approach to

other alternatives, such as conditional normal, t, and non-parametric quantiles. Our results

show that EVT outdoes a GARCH model with normal innovations by far, and that it gives

similar results to a GARCH model with t innovations, as long as innovations come from a

relatively symmetric and fat-tailed distribution. In turn, GARCH models with non-

parametric estimation of quantiles give also more accurate VaR estimates than the

assumption of conditional normality. And, they have the advantage of being easy to

compute.

The relevance of this paper is the following. Value at risk has recently become a

subject of major importance to the Chilean financial system. In particular, last October the

Superintendence of Financial Assets and Insurance of Chile (Superintendencia de Valores y

Seguros) gave special instructions to insurance and re-insurance companies on how to asses

monthly the market risk of all their financial assets and real state using VaR. 2

                                                
2 Excluded from this computation are Chilean peso-denominated and inflation-linked financial assets whose
maturity does not exceed one year. (See Normal de Caracter General No. 148, Superintendencia de Valores y
Seguros, available at www.svs.cl).
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Consequently, a better understanding of value at risk and the drawbacks involved in the

traditional ways of computing it are worth discussing. In addition, the more advanced

techniques presented in this paper deserved to be taken into consideration for refinements

government authorities might consider in the future. 3

This paper is organized as follows. Section II presents a theoretical background on

extreme value theory. Section III presents a description of the data and our estimation

results. Finally, Section IV summarizes our main findings.

II Theoretical Background

Let X1, X2,.., Xn be identically distributed and independent (iid) random variables

representing risks or losses with unknown cumulative distribution function (cdf),

F(x)=Pr(Xi≤x). Examples of random risks are negative returns on financial assets or

portfolios, operational losses, catastrophic insurance claims, credit losses, natural disasters

such as floods, service life of items exposed to corrosion, traffic prediction in

telecommunications, etcetera (see Coles, 2001; Reiss and Thomas, 2001; McNeil and Frey

2000).

As a convention, a loss is treated as a positive number and extreme events take

place when losses come from the right tale of the loss distribution F. Let Mn=max(X1,

X2,…, Xn) be the worst-case loss in a sample of n losses. For a sample of iid observations,

the cdf of Mn is given by

)x(F)x(F)xX...,,xX,xXPr()xMPr(
n

1i

n
n21n ∏

=

==≤≤≤=≤ (1)

                                                
3 Page 11 of Normal de Caracter General No. 148 states that all observations must be within three standard
deviations from the average return in a particular month. If an observation does not meet this requirement, it
must be accordingly truncated. This procedure is certainly an arbitrary way to deal with outliers.
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An asymptotic approximation to Fn (x) is based on the Fisher-Tippet theorem. Given

that x<x+, where x+ is the upper end-point of F (that is, the smallest value of x such that

F(x)=1), Fn(x)→0 as n→∞, the asymptotic approximation is based on the standardized

maximum value

n

nn
n

M
Z

σ
µ−= , σn>0 (2)

where σn and µn are a scale and location parameters, respectively. The Fisher-Tippet

theorem states if Zn converges to some non-degenerate distribution function, this must be a

generalized extreme value (GEV):
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The parameter ξ is a shape parameter and determines the tail behavior of Gξ(z). If Zn

converges to Gξ(z), then Zn is said to be in the domain of attraction of Gξ(z). The shape

parameter ξ is in turn determined by the tail behavior of the cdf of the underlying data, F. If

the tail of F declines exponentially, then Gξ(z) is of the Gumbel type and ξ=0. In this case,

distributions in the domain of attraction of Gξ(z) are of the thin-tailed type, such as the

normal, log-normal, exponential, and gamma. If the tail of F declines by a power function

instead, then Gξ(z) is of the Fréchet type and ξ>0. Distributions in the domain of attraction

of Gξ(z) are called fat tailed distributions, which include the Pareto, Cauchy, Student-t, and

mixtures models. Finally, if the tail of F is finite then Gξ(z) is of the Weibull type and ξ<0.

Distributions in the domain of attraction of Gξ(z) are in this case distributions with bounded

support, such as the uniform and beta.

In practice, modeling all block maxima is wasteful if other data on extreme values

are available. Therefore, a more efficient approach is to model the behavior of extreme

values above a high threshold. This method receives the name of peaks over threshold
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(POT). An additional advantage of POT is that provides with Value-at-Risk (VaR) and

expected shortfall (ES) estimates that are easy to compute. As we know, VaR (i.e., the qth

quantile of F) and ES (i.e., the average loss given that VaR has been exceeded), are

commonly used risk measures.

Let us define the excess distribution above the threshold u as the conditional

probability

0y,
)u(F1

)u(F)uy(F
)uX|yuXPr()y(Fu >

−
−+=>≤−= (4)

For those distributions F that satisfy that the cdf in (2) converges to (3), it can be

shown that for large enough u there exists a positive function β(u), such that (4) is well

approximated by the generalized Pareto distribution (GPD)
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where β(u)>0, and y≥0 when ξ≥0, and 0≤y≤−β(u)/ξ when ξ<0.

For a given value of u, the parameters ξ, µ, and σ of the GEV distribution determine

the parameters ξ and β(u). In particular, the shape parameter ξ is independent of u, and it is

the same for both the GEV and GDP distributions. If ξ>0, F is in the Fréchet family and

Hξ,β(u) is a Pareto distribution; if ξ=0, F is in the Gumbell family and Hξ,β(u) is an

exponential distribution; and, if ξ<0, F is in the Weibull family and Hξ,β(u) is a Pareto type

II distribution. In most applications of risk management, the data comes from a heavy-
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tailed distribution, so that ξ>0. In this case, E(Xk)=∞ for k≥1/ξ. For example, if ξ=0.5 the

distribution of losses has an infinite variance.

Estimates of the parameters ξ and β(u) can be obtained from expression (5) by the

method of maximum likelihood (ml). In particular, let x1,  x2, …, xn be an iid sample of

losses with unknown cdf F. For a given high threshold u, extreme values are those xi such

that xi−u>0. Let us denote these values as x(1),  x(2),…, x(k), and define the excesses as

yi−x(i)−u, i=1, 2,.., k. If u is large enough, then y1, y2,…,yk may be thought of as a random

sample from a GDP distribution with unknown parameters ξ and β . (Hereafter, for

simplicity the argument of β  is omitted). For ξ≠0, the log-likelihood for an iid sample is

given by

∑
=
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with yi≥0 when ξ>0 and 0≤yi≤−β/ξ. For ξ=0, the log-likelihood function simplifies to

∑
=β

−β−=βξ
k

1i
iy

1
)ln(k),(L .

The asymptotic properties of ml estimates apply here as usual.

In order to estimate the tails of the loss distribution, we use the result that, for a

sufficiently high threshold u, Fu(y)≈Gξ,β(u)(y). Now, by setting x=u+y, an approximation of

F(x), for x>u, can be obtained from equation (4)

)u(F)y(G))u(F1()x(F )u(, +−= βξ (7)
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An estimate of F(u) can be obtained non-parametrically by means of the empirical

cdf

n
kn

)u(F̂
−= (8)

where k represents the number of exceedences over the threshold u. After substituting (7)

into (8), we get the following estimate for F(x)

ξ
−
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where ξ̂  and β̂  are the ml estimates of ξ and β , respectively.

As mentioned earlier, two commonly used risk measures are the value at risk (VaR)

and the expected shortfall (ES). Both are usually computed for confidence levels between

95 and 99.5 percent. That is, for 0.95≤q<1, VaRq is the qth quantile of the distribution F

VaRq=F−1(q) (10)

where F−1 is the inverse function of F. For q>F(u), an estimate of (10) can be obtained from

(9) by solving for x
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The expected shortfall is the expected loss, given that VaRq is exceeded

ESq=E(X|X>VaRq)=VaRq+ E(X−VaRq|X>VaRq) (12)
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The expression E(X−VaRq|X>VaRq) is the mean of the excess distribution over the

threshold VaRq. It can be shown that (see, for example, Coles, 2001)

ξ−
−ξ+β

=>−
1

)uVaR(
)VaRX|VaRX(E q

qq (13)

provided that ξ<1. From equations (11) through (13), we obtain an approximation to ESq

ξ−
ξ−β

+
ξ−

=
∧∧

ˆ1

uˆˆ

ˆ1

VaR
ES

q

q (14)

In our estimation process, we follow McNeil and Frey (2000)’s two-step estimation

procedure called conditional EVT:

Step 1: Fit a GARCH-type model to the return data by quasi-maximum likelihood. That is,

maximize the log-likelihood function of the sample assuming normal innovations.

Step 2: Consider the standardized residuals computed in step (1) to be realizations of a

white noise process, and estimate the tails of the innovations using extreme value theory.

Next, compute the quantiles of the innovations for q≥0.95.

We assume that the dynamics of log-negative returns can be represented by

rt = µ + σtZt (15)

where µ is a constant term and Zt are iid innovations with zero mean and unit variance, and

marginal distribution FZ(z).
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The conditional variance of the mean-adjusted series ε t=rt−µ follows a GARCH(1,1)

process

2
1t

2
1t10

2
t −− σγ+εβ+β=σ (16)

where β0>0, β1>0, and γ>0. Strictly stationarity is ensured by β1+γ<1.

Under the assumption of normally distributed innovations, the log-likelihood

function of a sample of iid observations becomes
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Standardized residuals can be computed after maximizing (17) with respect to the

unknown parameters µ, β0, β1, and γ
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where µ̂  and }ˆ,...,ˆ,ˆ{ t2nt1nt σσσ +−+−  are the pseudo-maximum likelihood estimates.

The natural 1-step forecast for the conditional variance in t+1 is given by

2
t

2
t10

2
1t ˆˆˆˆˆˆ σγ+εβ+β=σ + (19)

where µ−=ε ˆrˆ
tt .
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For a one-day horizon, estimates of the dynamic risk measures are

q1t

t

q

q1t

t

q
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where 
∧

qVaR  and 
∧

qES  are given by equations (11) and (14), respectively, and

2
t

2
t101t

ˆˆˆˆˆˆ σγ+εβ+β=σ + .

It is important to mention that, even if Zt is not truly normally distributed, the

maximization of (17) still provides consistent and asymptotically normal estimates (see, for

example, Engle and Gonzalez-Rivera, 1991). This result is the one on which McNeil and

Frey’s approach relies upon.

III Data

3.1 Descriptive Statistics and Preliminary Results

We worked with the following series at a daily frequency, which are particularly

relevant to the Chilean financial market: the Index Price of Selective Stocks (IPSA), which

gathers the forty most traded shares on the Santiago Exchange, Chile (sample period: 1990-

November 2002); the Chilean peso/US dollar exchange rate (sample period: 1988-2002);

the spot price of copper (sample period: 1998-2002); and, a proxy for a one-year zero

coupon bond traded domestically (sample period: 1993-2001).

Our proxy of a 1-year zero-coupon bond was constructed as follows. Daily data of

the average interest rate paid on 1-year bank (inflation-linked) deposits are available from

Bloomberg since 1993 approximately. Taking this as a reasonable proxy for a 1-year

riskless rate, the price on day t of a zero-coupon bond that pays $1 in one year is
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t
t r1

1
P

+
= , where rt is the annualized 1-year rate on day t. The return on the zero-coupon

bond on day t is defined as (Pt/Pt−1−1)*100. Data on zero-coupon bonds, with maturities of

two, three and four years, is available in the Chilean financial market on a daily frequency

only since December 2001. Therefore, the time series were too short for carrying out our

estimation, and we preferred the proxy just described.

All computations of this and the following sections were programmed in the

S+FinMetrics module of S-Plus 6.1. Table 1 shows some descriptive statistics of the daily

returns on the above series. The mean return is close to zero for all of the four series.

However, they differ considerably in terms of both volatility and tail thickness, which are

quantified by the interquartile range and kurtosis, respectively. In particular, the Ch$/US$

exchange rate and the proxy of a zero-coupon bond return series exhibit both very low

volatility and high kurtosis when compared with the IPSA and copper return series.

[Table 1 about here]

Partial autocorrelations are mostly statistically insignificant for all return series from

the thirteen lag onwards. This in turn translates into rejection of the null hypothesis of a

unit root. The assumption of normally distributed returns is strongly rejected by all series,

as Figure 1 suggests.

[Figure 1 about here]

The next step was to fit a GARCH (1, 1) model of the sort described in the previous

section, and compute the standardized residuals for every return series according to

expression (18). Specification tests are reported in Table 2. The Lagrange multiplier test

(TR2) applied to each series cannot reject the null hypothesis of “no residual ARCH”. The

Ljung-Box test in turn finds no evidence to reject the null hypothesis of no autocorrelation.

[Table 2 about here]
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Given that a GARCH(1,1) specification cannot be rejected in any case, we next set a

threshold u for each individual series and assume that the (standardized) residuals

exceeding u follow a generalized Pareto distribution (GDP). Table 3 shows GDP estimates

for both tails of the innovations for each of the four return series. In each case, the number

of points above the threshold u is 10 percent of the observations in each tail. (This is

roughly the same percentage used by McNeil and Frey, 2000).

[Table 3 about here]

Except for the innovations of the Ch$/US$ exchange rate returns, the shape

parameter ξ for losses (large positive residuals) and gains (large negative residuals) turns

out to be statistically insignificant for the other three series. That means that tail

distributions in those cases do not departure substantially from the Gumbel type (thin tailed

distributions). This can be also measured by the ratio of the expected shortfall to VaR. For

the 99-percent quantile, this ratio is 1.15 for a standard normal (see McNeil and Frey, op.

cit). As we see, except for the exchange rate return series, the expected shortfall to VaR is

around 1.2 for losses and gains. (Although the gains distribution of our proxy of a zero-

coupon bond is slightly more heavy tailed). This number is not considerably greater than

that of a N(0,1) distribution.

Panels (a) through (d) of Figure 2 shed more light on this issue. For all of the four

cases, the normal distribution understates the extent of large losses and gains. The t

distribution, on the other hand, overestimates large losses and gains for IPSA, copper, and

the 1-year zero coupon bond, but it does only slightly for the Ch$/US$ exchange rate.

[Figure 2 about here]

3.2 Estimation of VaR in-Sample and Out of Sample

In this section, we follow an approach similar to Engle (2001)’s, but we explicitly

model the behavior of tails according to the EVT approach described earlier. We used all

observations except for the last two years to estimate the 99-percent VaR in-sample. The
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last two years of the data were used for backtesting. The results are depicted in Panels (a)

through (d) of Figures 3.

[Figure 3 about here]

The expected in-sample error is 1 percent. The log-negative returns on the proxy of

a zero-coupon bond (sample period: 1993-1999) and copper (sample period: 1998-2000)

exceeded VaR 0.87 and 0.99 percent of the time, respectively, which is close to the

expected. By contrast log-negative returns on IPSA (sample period: 1990-2000) and the

Ch$/US$ exchange rate (sample period: 1988-2000) tended to underestimate losses (0.61

and 0.77 percent, respectively) more often than in the other two cases.

Estimation of the 99-percent VaR out of sample is computed without updating the

parameter estimates previously obtained. Likewise, the 99-percent quantile of the

innovation distribution for each series is not recalculated either. The time period for

backtesting is 2001-2002 for all series except for the proxy of a zero-coupon bond, which is

2000-2001. The value at risk is exceeded by the log-negative returns on IPSA and copper 2

and 5 times, respectively (that is, 0.42% and 0.66% of the time, respectively). This suggests

that our measure of risk is rather conservative, especially for IPSA. This is not as true for

the Ch$/US$ exchange rate and the proxy of a zero-coupon bond, for which VaR is

exceeded 1.6% and 1.43% of the time, respectively.

However, as Engle points out, in this case it not easy to asses how accurate a

measure of risk VaR is out of sample. In particular, neither parameter estimates nor

quantiles incorporate the new information that becomes available in the backtesting period.

That is why in the next section we focus on a backtesting procedure that dynamically

adjusts quantiles, and that allows us to conclude statistically which way to compute VaR

might be best.

3.3 Dynamic Backtesting
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In order to asses the accuracy of the EVT approach and alternative ways to compute

VaR, we backtested the method on the four return series described earlier by the following

procedure. Let r1,  r2, …, rm be a historical return series. The conditional quantile t
qr̂  is

computed on t days in the set of T={n, …, m−1) using an n-day window each time. The

large of n we set depended on the sample size of each returns series. For IPSA, the

Ch$/US$ exchange rate, and our proxy of 1-year zero coupon bond, n took on the value of

974, 992, and 999, respectively, so that we had about the last four years of data for

prediction. Given that the daily series of copper only covered the period 1998-2002, we set

n=504, so that we had the last two years of data for prediction.

The constant k, which defines the number of exceedences above the threshold u as

described in Section II, was set following McNeil and Frey (2000)’s approach. In

particular, the authors set k so that the 90th percentile of the innovation distribution is

estimated by historical simulation. For instance, for copper we set k=50.

On each day t ∈ T, we estimated a new GARCH(1,1) model and fitted a new

generalized Pareto distribution to losses, which were computed from the series of

standardized residuals. This procedure, as explained in Section II, is called conditional

EVT. In addition, we estimated the unconditional EVT quantile, which corresponds to

expression (11).

The conditional normal quantile is simply given by zq=Φ−1(q), where Φ(.) is the cdf

of a standard normal. In turn the quantile of a Student-t distribution (scaled to have variance

1) is given by )q(F/)2(z 1
Tq
−υ−υ= , where T follows a t-distribution with υ degrees of

freedom (υ>2). On each day t, we estimated a GARCH(1,1) model with Student-t

innovations and estimated a new υ and new quantiles. The value at risk was computed

according to formula (20) for both the normal and t conditional cases.
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If Zt is assumed to be distributed as t with υ degrees of freedom in equation (15), the

log-likelihood function of the sample becomes (see, for example, Hamilton, 1994, chapter

21)
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where n is the sample size. This is a better approximation to the data generating process in

case observed returns appear to come from a (symmetric) fat-tailed distribution. As

discussed below, the t distribution works better in VaR estimation than the conditional

normal approach.

The quantile estimate in t t
qr̂  is compared in each case with rt+1, the log-negative

return in t+1 for q ∈ {0.95, 0.99, 0.995}. A violation is said to take place whenever rt+1> t
qr̂ .

We can test whether the number of violations is statistically significant. In particular, let us

consider the following statistic based on the binomial distribution

)1,0(N

n
)p1(p

p
n
Y

d→
−

−
(22)

where n is the sample size and Y is the number of violations, so that Y/n is the actual

proportion of violations. The proportion p is the expected number of violations, under the

assumption that the indicator function )p(Be~11I }zZ{}rr{t q1t
t

q1t >> ++
=≡ . This is a one-

tailed test that is asymptotically distributed as N(0,1) (see, for example, Larsen and Marx,

1986, chapter 5). If Y/n<p, we test the null hypothesis of estimating correctly the

conditional quantile against the alternative that the method systematically underestimates

the conditional quantile. Otherwise, we test the null against the alternative that the method

systematically overestimates the conditional quantile.
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Panel (a) of Table 4 presents backtesting results based on population quantiles of

95, 99 and 99.5 percent. The conditional t, normal, EVT and the unconditional EVT

approaches were computed as described above. Our rule is that the null hypothesis is

rejected whenever the p-value of the binomial test is less than 5 percent. Our results show

that the conditional normal approach is the one that rejects the null hypothesis most often

(in 7 out of 12 cases). As expected, this approach tends to work worse the higher the

confidence level. For instance, for the 99.5 percent quantile this approach rejects the null

for all return series except for copper.

The conditional t and the EVT approaches are the closest to the mark: the former

rejects the null hypothesis only once while the latter rejects it twice. In particular, the

conditional t approach beats the conditional EVT approach for the 99.5 percent quantile of

our proxy of the zero-coupon bond. In turn the unconditional EVT approach also works

well: it rejects the null in 3 out of 12 occasions. Conditional and unconditional EVT

estimates along with log-negative returns are depicted in Panels (a) through (d) of Figure 4.

[Figure 4 about here]

We also explore the performance of empirical quantiles in computing VaR, an issue

that is not addressed by McNeil and Frey. Panel (b) of Table 4 shows backtesting using

empirical quantiles. This procedure is similar to those described above but, instead of

parameterizing the tails of the innovation distribution, quantiles are computed from the

empirical distribution of standardized residuals each time a new GARCH-model is fitted to

the data. This procedure works well (the null hypothesis is rejected in 3 out of 12 cases),

and it is easy to compute. In particular, unlike the conditional normal approach, it takes

account of the thickness of tails. Again, the poorest fit is for the exchange rate (the null is

rejected twice), and for our proxy of a zero-coupon bond return series (the null is rejected

once). However, the null is never rejected for copper and IPSA.

[Table 4 about here]
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Our results are similar in nature to those find by McNeil and Frey (2000), although

for their returns series the conditional EVT approach never rejects the null hypothesis. At

this stage, it worth noticing that most rejections of the null hypothesis occur for the

exchange rate and our proxy of a zero-coupon bond return series. As Table 1 shows, both

are characterized by relatively low volatility (e.g., the interquartile ranges of both series are

much lower than those of the IPSA and the copper returns series), and by very high

kurtosis.

This can be easily seen in the corresponding histograms of Figure 1 and Panels (a)

and (b) of Table 5. For the exchange rate return series the 25 and 75 percent quantiles are

−0.12 and 0.16 percent, respectively, and 99.7 percent of the returns are between −2 and 2

percent. The dispersion is even lower for our proxy of a 1-year zero: the 25 and 75 percent

quantiles are −0.048 and 0.047 percent, respectively, and 98.7 percent of the returns are

between −0.5 and 0.5 percent. In other words, the low dispersion of returns along with the

presence of a few outliers would explain the relatively poor fit of tails in these two cases.

In summary, the conditional t and EVT approaches are the best. In addition, good

alternatives to the normal approach are the unconditional EVT and the empirical quantiles

approaches.

IV Conclusions

Value at Risk (VaR) is a popular measure of market risk, whose origins date back to

the late 1980’s at J.P. Morgan. VaR answers the question about how much we can lose with

a given probability over a certain time horizon. It became a key measure of market risk

since the Basle Committee stated that banks should be able to cover losses on their trading

portfolios over a ten-day horizon, 99 percent of the time.
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Traditional parametric and non-parametric methods work well in areas of the

empirical distribution where there are many observations, but they provide with a poor fit

to the extreme tails of the distribution. This is evidently a disadvantage because

management of extreme risk calls for estimation of quantiles and tail probabilities that

usually are not directly observable from the data. Extreme value theory (EVT) focuses on

modeling the tail behavior of a loss distribution using only extreme value rather than the

whole data set.

In this paper, we estimate assets volatility with GARCH-type models and compute

tails distributions of GARCH innovations by EVT. This allows us to compute conditional

quantiles, and compare the EVT approach to other alternatives, such as conditional normal,

Student-t, and non-parametric quantiles. Our results show that EVT outdoes a GARCH

model with normal innovations by far, and that it gives similar results to a GARCH model

with t innovations, as long as innovations come from a relatively symmetric and fat-tailed

distribution. In turn, GARCH models with non-parametric estimation of quantiles give also

more accurate VaR estimates than the assumption of conditional normality. And, they have

the advantage of being easy to compute.
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TABLES

Table 1 Descriptive Statistics of Daily Returns

IPSA Ch$US$
exchange rate

Copper (Proxy) 1-year zero
coupon bond

# observations 2,742 3,240 1,257 2,209
Mean 0.09% 0.03% −0.01% 0.00%

Median 0.04% 0.03% −0.06% 0.00%
Std. Dev. 1.32% 0.36% 1.22% 0.14%

Interquartile range 1.42% 0.28% 1.53% 0.10%
Minimum −7.66% −4.82% −5.38% −0.89%
Maximum 8.97% 4.34% 6.00% 1.70%
Kurtosis 3.90 24.47 1.64 29.67

Skewness 0.30 −0.06 0.43 0.43
ρ1 0.251

(0.00)
0.132
(0.00)

−0.093
(0.00)

−0.224
(0.00)

ρ2 −0.041
(0.03)

−0.012
(0.49)

0.001
(0.98)

−0.069
(0.00)

ρ3 0.003
(0.86)

−0.003
(0.88)

−0.012
(0.67))

−0.053
(0.01)

ρ4 0.025
(0.19)

−0.034
(0.05)

0.055
(0.05)

−0.055
(0.01)

ρ13 0.047
(1.00)

0.016
(1.00)

0.026
(1.00)

0.006
(1.00)

ρ26 0.016
(0.40)

0.015
(0.39)

0.023
(0.41)

−0.037
(0.08)

ρ60 0.021
(0.27)

0.010
(0.55)

0.014
(0.62)

0.014
(0.51)

Jarque-Bera test 1,777.9
(0.00)

80,815.1
(0.00)

179.02
(0.00)

82,315.9
(0.00)

Augmented Dickey-
Fuller test

−14.75
(0.00)

−16.86
(0.00)

−10.54
(0.00)

−12.47
(0.00)

Notes: IPSA stands for Price Index of Selective Stocks, and gathers the 40 most traded stocks on the Santiago
Stock Exchange, Chile. The sample period for IPSA is January 1990-November 2002 (data source:
Bloomberg, Central Bank of Chile).; for the Ch$/US$ exchange rate is 1988-2002 (data source: Central Bank
of Chile); for copper is 1998-2002 (data source: London Metal Exchange); and, for the proxy of a 1-zero
coupon bond is 1993-2001 (data source: Bloomberg). ρ j represents the autocorrelation coefficient of order j.
P-values are between parentheses.
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Table 2 Specification Tests for GARCH (1,1) Models

Returns series Lagrange multiplier test (TR2) for
serial correlation (12 lags)

Test for ARCH effects (12 df)

IPSA 17.27
(0.14)

16.75
(0.16)

Ch$/US$ exchange rate 0.21
(1.00)

0.22
(1.00)

Copper 7.53
(0.82)

6.98
(0.86)

(Proxy) 1-year zero coupon bond 13.02
(0.37)

13.91
(0.34)

Notes: P-values are between parentheses. The sample periods are the same as those described at the bottom of
Table 1.

Table 3 Tails of IPSA, $Ch/US$ Exchange Rate, Copper, and 1-year Zero Coupon Bond Innovations

(a) IPSA: 1990-2000
Tail u ξ̂ s.e β̂ s.e Observations q=99%

quantile (xq) sfall sfall/ xq

Losses 1.528 −0.023 0.074 0.572 0.064 1,408 2.44 2.98 1.22
Gains 1.748 −0.035 0.090 0.542 0.068 1,334 2.58 3.07 1.19

(b) $Ch/US$ exchange rate: 1988-2000
Tail u ξ̂ s.e β̂ s.e Observations q=99%

quantile (xq) sfall sfall/ xq

Losses 1.310 0.300 0.088 0.516 0.060 1,555 2.34 3.52 1.50
Gains 1.403 0.402 0.108 0.475 0.061 1,685 2.51 4.04 1.61

(c) Copper: 1998-2001
Tail u ξ̂ s.e β̂ s.e Observations q=99%

quantile (xq) sfall sfall/ xq

Losses 0.955 −0.029 0.068 0.516 0.054 519 2.31 2.77 1.20
Gains 0.993 −0.036 0.082 0.679 0.079 488 2.72 3.31 1.22

(d) (proxy) 1-year zero coupon bond: 1993-2001

Tail u ξ̂ s.e β̂ s.e Observations q=99%

quantile (xq) sfall sfall/ xq

Losses 1.529 −0.012 0.096 0.613 0.086 981 2.58 3.17 1.23
Gains 1.724 0.033 0.158 0.794 0.156 742 2.89 3.78 1.31

Notes: ‘sfall’ stands for expected shortfall.
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Table 4 Backtesting Results

(a) Population Quantiles

95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5%
Cond.

t
Cond.

normal
Cond.
EVT

Unc.
EVT

Cond.
t

Cond.
normal

Cond.
EVT

Unc.
EVT

Cond.
t

Cond.
normal

Cond.
EVT

Unc.
EVT

IPSA
% error 4.82% 4.59% 5.45% 5.00% 0.99% 1.23% 1.14% 1.05% 0.45% 0.86% 0.50% 0.59%
expected 5.00% 5.00% 5.00% 5.00% 1.00% 1.00% 1.00% 1.00% 0.50% 0.50% 0.50% 0.50%
binomial test −0.39 −0.88 0.98 0.00 −0.04 1.07 0.64 0.21 −0.33 2.42 0.00 0.60
p-value 0.35 0.19 0.16 0.50 0.52 0.14 0.26 0.42 0.63 0.01 0.50 0.27
rejection of null 0 0 0 0 0 0 0 0 0 1 0 0
Exchange rate
% error 4.88% 3.39% 6.19% 6.96% 0.91% 1.35% 1.17% 1.31% 0.36% 0.80% 0.62% 0.69%
expected 5.00% 5.00% 5.00% 5.00% 1.00% 1.00% 1.00% 1.00% 0.50% 0.50% 0.50% 0.50%
binomial test −0.28 −3.88 2.87 4.71 −0.47 1.83 0.87 1.64 −1.01 2.24 0.89 1.43
p-value 0.39 0.00 0.00 0.00 0.32 0.03 0.19 0.05 0.16 0.01 0.19 0.08
rejection of null 0 1 1 1 0 1 0 0 0 1 0 0

Copper
% error 3.58% 3.58% 5.04% 4.38% 0.40% 0.80% 0.80% 0.53% 0.27% 0.40% 0.27% 0.27%
expected 5.00% 5.00% 5.00% 5.00% 1.00% 1.00% 1.00% 1.00% 0.50% 0.50% 0.50% 0.50%
binomial test −1.79 −1.79 0.05 −0.79 −1.66 −0.56 −0.56 −1.30 −0.91 −0.40 −0.91 −0.91
p-value 0.04 0.04 0.48 0.22 0.05 0.29 0.29 0.10 0.18 0.35 0.18 0.18
rejection of null 1 1 0 0 0 0 0 0 0 0 0 0

Zero
% error 5.68% 4.87% 5.28% 5.76% 1.06% 2.19% 1.30% 1.62% 0.57% 1.62% 0.89% 0.97%

expected 5.00% 5.00% 5.00% 5.00% 1.00% 1.00% 1.00% 1.00% 0.50% 0.50% 0.50% 0.50%
binomial test 1.10 −0.21 0.44 1.23 0.19 4.20 1.05 2.20 0.34 5.59 1.95 2.36
p-value 0.14 0.42 0.33 0.11 0.42 0.00 0.15 0.01 0.37 0.00 0.03 0.01
rejection of null 0 0 0 0 0 1 0 1 0 1 1 1
rejection of null 1 2 1 1 0 2 0 1 0 3 1 1
by quantile
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Table 4 Continued

(b) Empirical Quantiles

Quantile 95% 99% 99.5%

IPSA
% error 5.5% 1.3% 0.6%
expected 5.0% 1.0% 0.5%
binomial test 1.08 1.29 0.91
p-value 0.14 0.10 0.18
rejection of null 0 0 0

Exchange rate
% error 6.2% 1.4% 0.7%
expected 5.0% 1.0% 0.5%
binomial test 2.87 2.22 1.43
p-value 0.00 0.01 0.08
rejection of null 1 1 0

Copper
% error 5.2% 0.8% 0.5%
expected 5.0% 1.0% 0.5%
binomial test 0.49 −0.56 0.08
p-value 0.31 0.29 0.47
rejection of null 0 0 0

Zero
% error 5.2% 1.4% 1.1%

expected 5.0% 1.0% 0.5%
binomial test 0.31 1.34 2.76
p-value 0.38 0.09 0.00
rejection of null 0 0 1
rejection of null 1 1 1
by quantile

Notes: (1) Parameter estimates are obtained by the method of maximum likelihood, as described earlier. (2)
The value of “1”, under the category of “rejection null”, indicates that the p-value of the binomial test is less
than 5 percent and, hence, the null hypothesis is rejected; and, 0 otherwise.
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Table 5 Tabulation of Returns on the Ch$/US$ Exchange rate and the (Proxy) of a Zero-coupon
Bond

(a) Ch$/US$ exchange rate
Cumulative Cumulative

Return value Count Percent Count Percent
[−0.06, −0.04) 1 0.03 1 0.03
[−0.04, −0.02) 2 0.05 3 0.08

[−0.02, 0) 1654 44.26 1657 44.34
[0, 0.02) 2071 55.42 3728 99.76

[0.02, 0.04) 8 0.21 3736 99.97
[0.04, 0.06) 1 0.03 3737 100.00

Total 3737 100.00 3737 100.00

(b) (Proxy) of zero-coupon bond
Cumulative Cumulative

Return value Count Percent Count Percent
[−0.01, −0.005) 12 0.52 12 0.52

[−0.005, 0) 925 40.17 937 40.69
[0, 0.005) 1351 58.66 2288 99.35

[0.005, 0.01) 11 0.48 2299 99.83
[0.01, 0.015) 2 0.09 2301 99.91
[0.015, 0.02) 2 0.09 2303 100.00

Total 2303 100.00 2303 100.00
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FIGURES

Figure 1 Histograms of Daily Returns
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Figure 2 Tail Behavior of Innovations
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 (b) Ch$/US$ Exchange Rate
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(c) Copper
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(d)  (Proxy) 1-year zero coupon bond innovations
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Notes: the degrees of freedom of the t distribution have been determined in each case by fitting a
GARCH(1,1) model to the data assuming t innovations. They are the following: 8.9 for IPSA, 3.6 for the
CH$/US$ exchange rate, 9.6 for copper, and 3.4 for the proxy of a 1-year zero coupon bond.
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Figure 3 Conditional 99% VaR and Log-Negative Returns In-Sample and Out of Sample
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In-sample (1988-2000), percent error: 0.62; Out-of-sample (2001-2002), percent error: 1.61

(c) Copper
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(d) (Proxy) 1-year zero-coupon bond
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Figure 4 Backtesting: Conditional and Unconditional 99% VaR according to EVT approach

(a) IPSA: 1994-2002
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(b) Ch$/US$ Exchange Rate: 1992-2002
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(c) Copper Sample period 2000-2002:
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Conditional EVT percent error: 0.8; Unconditional EVT percent error: 0.53

(d) (Proxy) 1-year zero coupon bond: 1997-2002
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