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Abstract 

 Technological innovations have contributed over the years to an increasing stock of 

durable goods—those products that are not immediately consumed but provide a stream of 

services over a long period of time. Indeed, virtually every household in a modern economy 

owns a refrigerator, a personal computer and an automobile. Given the inter-temporal nature 

of replacement decisions, the existing literature has resorted to the technique of dynamic 

programming, and most recently to the theory of stochastic processes.  

 This article focuses on micro replacement decisions. We survey some representative 

models of the recent literature, and discuss their empirical testability. In addition, we study 

replacement of home appliances in the United States, and construct a test statistic that leads to 

conclude that replacement decisions might be correlated across appliances. Finally, we enrich 

our analysis by developing a theoretical model in which replacement decisions are 

interdependent.  
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1 Introduction 

 Technological innovations have contributed over the years to an increasing stock of 

durable goods—products that are not immediately consumed but provide a stream of 

services over a long period of time. Indeed, virtually every household in the United States, 

and to a great extent in the rest of the world, owns or has access to a microwave oven, a 

cloth washer, a computer, among many other durable goods (see Figures 1 a and b). Despite 

the rich theoretical body of knowledge existing in different fields (e.g., economics and 

operations research) to analyze durable goods purchases, only in the past few years have 

applied researchers succeeded in identifying the forces behind replacement of durable 

goods.  

[Figures 1a and b about here] 

 Given that time plays an essential role in replacement decisions, dynamic 

programming has naturally arisen as an adequate mathematical tool to tackle the replacement 

problem (e.g., Beckmann, 1968; Kamien and Schwartz, 1971; Bertsekas, 1976; Sargent, 

1987). The most recent literature has also resorted to the theory of stochastic processes, and 

characterized the physical decay of a durable good as a Markov process in either discrete time 

or continuous time (e.g., Rust 1985, 1987; Ye 1990; Dixit and Pindyck 1994; Mauer and Ott, 

1995; Huei Yeh, 1997).  

However, even though enormous progress has been made on the theoretical ground, 

most empirical studies of acquisition and replacement of durable goods do not derive from a 

consumer or firm’s optimization process. Instead, they present ad-hoc statistical models 

developed from the techniques of discrete choice and duration analysis. Exceptions, among 

others, are the work of Dubin and McFadden (1984), Rust (1987), Caballero and Engle (1991, 
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1999), Cooper, Haltiwanger, and Power (1999), Lai, Leung, Tao, Wang (2000), and Martin 

(2001). 

 The aim of this article is threefold. First, to present some micro replacement models 

which are somehow representative of the most recent literature, and discuss their empirical 

testability. In addition, to briefly refer to the state of the art of demand for durable goods 

modeling in the field of macroeconomics. Second, to study replacement of home appliances in 

the United Statesparticularly, refrigerators and water heaters, and test whether replacement 

decisions might be correlated across appliances. Finally, to develop a richer framework where 

households do not replace a durable good in isolation, but where they consider replacing 

several items simultaneously.  

 The main contributions of this article are the following. First, to give an overview of 

how the micro and macroeconomists have tackled the replacement problem. Second, to 

present an empirical application where the interdependence of replacement decisions is tested. 

Finally, to obtain an empirical testable model for multiple replacement decisions. The author 

of this paper is not aware of any study of similar characteristics.  

 This article is organized as follows. Section 2 goes through micro models by Rust 

(1985, 1987), Ye (1990), and Mauer and Ott (1995). Section 3 briefly discusses new 

developments in the demand for durable goods in macroeconomics and other fields. Finally, 

Section 4 focuses on replacement of home appliances. Specifically, Section 4.1 studies 

replacement of refrigerators and water heaters, using data from the U.S. Residential Energy 

Consumption Survey (RECS). Section 4.2 develops a test statistic for interdependence of 

replacement decisions, and applies it to the estimation results of Section 4.1. Section 4.3 
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develops a theoretical model for multiple replacement decisions. Finally, the main conclusions 

are presented..  

2 Replacement Decisions in a Dynamic Context 

 The models surveyed in this section deal with replacement decisions under uncertainty 

in an infinite-time horizon. In particular, we go through some recent papers where the 

replacement problem has been tackled by resorting to the theory of stochastic processes and 

stochastic calculus: Rust (1985, 1987), Ye (1990), and Mauer and Ott (1995). Rust studies the 

existence of a stationary equilibrium in a market for a durable asset, which physically 

deteriorates according to a discrete-time Markov process. A similar set-up, but in continuous 

time, is postulated by Ye. Mauer and Ott in turn show that uncertainty about the arrival of 

technological innovation may lead to a significant decrease in replacement investment.  

 We should point out at the outset that the set of models presented in this section is by 

no means exhaustive. However, these models share some interesting features. In particular, all 

of them determine the optimal replacement time by the stopping time technique, and assume 

that equipment physical decay can be characterized as a Markovian process. The concept of 

stopping time will be particularly useful to the empirical application presented in Section 4. A 

more complete overview of micro and macro models developed to analyze the demand for 

durable goods is presented in Section 3.  

2.1 Some Micro Replacement Models  

 Early attempts to analyze the replacement problem have modeled the optimal time 

until preventive maintenance of a machine must be performed. For example, Beckmann 

(1968) focuses on a firm that each period decides to either spend on preventive maintenance 

that will make its current equipment "as good as new;" or to wait until failure occurs, and 

purchase new equipment. Another paper along the same lines is Kamien and Schwartz (1971).  
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The most recent literature introduces randomness in the replacement problem by 

assuming that the physical condition of the piece of equipment deteriorates according to some 

continuous or discrete stochastic process. For example, Rust (1985, 1987) assumes that a 

durable good can be described as a discrete Markov process, whose physical condition at time 

t is described by a nonnegative real number.2 Continuous Markov processes are analyzed by 

Ye (1990) and Mauer and Ott (1995), among others.  

 Specifically, Rust (1985) studies the existence of a stationary equilibrium in a market 

for a stochastically deteriorating durable asset. His model tracks the trading process of a 

durable good from its production in the primary market through its sequence of owners in the 

secondary market, until it is scrapped.  

Each durable good is represented as a discrete time Markov process whose state at 

time t is described by zt, a nonnegative real number. The level of zt indicates the degree of 

physical deterioration of the piece of equipment. The consumer holds at most one durable per 

period over an infinite time horizon, and chooses an optimal durable selection and replacement 

policy to maximize the expected utility of owning an infinite sequence of durable goods. 

At the beginning of each period, the consumer faces two choices: either to continue 

with his/her current piece of equipment or to scrap it and replace it. Under a set of 

assumptions, Rust shows that the optimal replacement policy takes the form: "replace if zt is 

greater or equal than z*, an optimal stopping barrier; do not replace otherwise". Furthermore, 

the author shows the existence and uniqueness of a stationary equilibrium, in which the 

distribution of asset lifetimes is the first time passage distribution to the optimal stopping 

                                                                 
2Kristensen (1994) presents a survey of Markov decision programming techniques applied to the animal 
replacement problem.  
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barrier z*. Equilibrium rental rates and durable prices are shown to embody the functional 

form of population distribution of preferences and technological features of durable goods.  

 In latter work, Rust (1987) develops a statistical specification for a model of bus 

engines replacement, similar in nature to that briefly described above. Based upon data for the 

time-period December, 1974-May, 1985, the author tests whether the decisions on bus engine 

replacement of the "Madison Metropolitan Bus Company” can be described by an optimal 

stopping rule. 

 Rust's base model assumes that the state variable, zt, is the accumulated mileage since 

last replacement on the bus engine at time t, and expected per period operating costs are given 

by an increasing, differentiable function of zt, c(zt, θ1), where θ1 is some parameter. Each 

month, the following discrete decision is faced: (i) perform maintenance on the current bus 

engine and incur operating costs c(zt, θ1), or (ii) scrap the old bus engine for P , install a new 

(or rebuilt) bus engine at cost P , and incur operating costs c(0, θ1). If it denote the replacement 

decision at t, it=0 (keep), it=1 (replace), then the stochastic process governing {it, zt} is the 

solution for the following regenerative optimal stopping problem3: 

 





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∞

=
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where the agent’s utility function, u, is given by: 
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and Π is an infinite sequence of decision rules given by Π={ft, ft+1,...}, where each ft specifies 

the replacement decision at time t as a function of the entire history of the stochastic process 

                                                                 
3 Once the bus engine is replaced, the system regenerates to state xt=0. 
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it=ft(zt, it−1 ,zt−1, it−2, zt−2,...}. The expectation in (1) is taken with respect to the controlled 

stochastic process {zt}, whose probability distribution is defined from Π and the transition 

probability p(zt+1 |zt, it, θ2): 
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=θ ++
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 Expression (3) states that, if the decision is to keep, then accumulated mileage zt+1 is 

drawn from the exponential distribution, 1−exp{θ2(zt+1−zt)}. If the decision it is to replace, zt 

regenerates to state 0, and then zt+1 represents a draw from the exponential distribution 

1−exp(θ2(zt+1−0)).  

 The function Vθ(zt) is the value function and is the unique solution for Bellman's 

equation given by: 

 ))i ,z(EV),i,(u(z max)z(V tt1tt)z(Cit tt θ∈θ β+θ=     (4) 

where C(zt)={0, 1}, and ) ,i ,zdy(p)y(V)i ,z(VE 2tt0tt θ= ∫
∞

θθ . 

 The solution for this maximization problem is given by the optimal stationary Markov 

replacement policy Π=(f, f, ...), where f is given by: 
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and γ(θ1, θ2) represents a threshold value of mileage or the optimal stopping barrier.  

 Rust's data refute the assumption of monthly mileage data being exponentially 

distributed. Therefore, he cons iders a class of more general dynamic discrete choice models, 

which do not necessarily have a closed-form solution for the agent's stochastic control 

problem. In order to estimate such models, via maximum likelihood, Rust resorts to a "nested 
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fixed point" algorithm. He concludes that this algorithm can be a practical, efficient, and a 

numerically stable method, and that the data seem consistent with his regenerative optimal 

stopping model. 

 Similar in nature to Rust's (1985, 1987), Ye (1990)'s replacement model assumes that 

the instantaneous maintenance and operation cost increases stochastically with physical 

deterioration. One appealing feature of Ye's set-up is that it gives rise to a parsimonious 

structural model that can be fitted to real data. We illustrate this point in Section 4.1 by 

presenting replacement models of refrigerators and electric water heaters. 

 Ye assumes that in every instant of time the consumer or firm must decide either to 

continue paying a rising maintenance and operation cost for the deteriorating piece of 

equipment; or, to sell it in the secondary market, and pay a fixed cost to purchase a new piece 

of equipment with a guaranteed low initial maintenance and operation cost. The objective 

function in this model is the expected total discounted cost of maintenance and operation as 

well as of purchasing. As in Rust's work, the optimal replacement rule is defined as a stopping 

barrier.  

 The instantaneous maintenance and operating cost is represented by xt. This may also 

be indicative of the state of the equipment. In particular, as in Rust's set-up, a higher xt 

indicates a more physically deteriorated piece of equipment. The evolution of xt is described 

by an arithmetic Brownian motion with constant drift, b, and instantaneous volatility, σ, where 

b>0 and σ≥0: 

 dxt = b dt + σ dWt        (6) 

where dWt represents an increment of a standard Wiener process. 
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The expected discounted total cost of obtaining the required service from this piece of 

equipment is given by: 

K(x)=E[ ]xxdsxe 0s0

rs =∫
∞ −        (7) 

where xs evolves according to (6), r is the discount rate, and x0 represents the state of the piece 

of equipment at time zero, which does not necessarily equal that of a new one, x*. 

 The installation cost of new equipment is a fixed amount, C
~

, and the scrap value of 

the previous equipment is zero. When x reaches x , an upper barrier, replacement takes place 

and the following condition is satisfied: 

 K(x ) = C
~

 + K(x*)        (8) 

That is, the total cost right before replacement, K(x), equals the total cost after replacement, 

K(x*), plus the cost of installing a new piece of equipment, C
~

.  

The function K(x) is assumed bounded to avoid the problem of explosive behavior: 
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Ye shows that the solution of K(x) is: 
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where λ is the positive root of the characteristic equation (1/2)σ2p2+bp−r=0. The optimal 

upper barrier is unique, and can be found from the condition K'( x )=0:  

 1 + λ(rC
~

+x*− x ) = exp(λ(x*− x ))      (11) 

 In addition, Ye shows that the total operation cost, K(x), at the optimal upper barrier, is 

increasing in C
~

, x*, and b, and decreasing in r. The derivatives of x  with respect to C
~

, a, b, 

and x*, and r are, however, generally ambiguous.  
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 An issue that is tackled neither by Rust or Ye is the existence of technological 

change. This can be an important determinant of replacement for some durable goods, such 

as personal computers4 and automobiles. Based upon a theoretical framework similar in 

nature to Rust and Ye’s, Mauer and Ott (1995) analyze equipment replacement in the 

presence of uncertainty about the arrival of technological innovation. Their base model 

considers a firm that operates a machine that produces a fixed level of output for a given 

maintenance and operation cost. The before-tax cost, Ct, evolves according to a geometric 

Brownian motion: 

 dCt = αCtdt + σ~ CtdWt       (12) 

where α and σ~  are the instantaneous drift and the volatility rate, respectively, with α>0 y 

σ~ ≥0, and dWt represents the increment of a standard Wiener process. All equipment has the 

same initial maintenance and operation cost CN>0, which subsequently evolves according to 

(12).  

 The net purchase price of new equipment is P(1−ϕ), where ϕ ∈ [0,1) denotes the 

investment tax credit, and P is the purchase price of a new piece of equipment. For tax 

purposes, it is assumed that a piece of equipment depreciates exponentially over time at the 

rate δ≥0. Thus, if the piece of equipment was purchased at time zero, its remaining book value 

at time t is given by P(1−ϕ)e−δt. For convenience, the elapsed time is modeled as a function of 

Ct. As a proxy for t, the authors use the expected first passage time from CN  to Ct, E(t). For a 

geometric Brownian motion, this is given by: 

 

                                                                 
4 The number of personal computers (PCs) in U.S. households has risen from zero in 1976, when the first 200 
Apple I PCs were manufactured, to nearly 43 million in 1997, when 35 percent of all U.S. households had at 
least one PC (source: U.S. Department of Energy).  
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 Using this result, the tax book value can be approximated by P(1−ϕ)(Ct/CN)−δ/Z, with 

Z/α− 2~σ /2>0. Then the depreciation tax shield of the machine over the time interval [t, t+dt] 

equals: 
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where τ ∈ [0,1) is the corporate tax rate. 

 At some unknown level of Ct, C , the firm discontinues operation of the piece of 

equipment, and replace it with a stochastically equivalent one. If V(C) represents the 

discounted expected value of the after-tax cost from the optimal replacement policy, then: 
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where Ct evolves according to equation (12), r denotes the discount rate5, and Co is the state of 

the piece of equipment at time zero.  

 For given values of the parameters r, α, 2~σ , τ, ϕ, CN and P, and a functional 

specification of the relation between salvage value and cost, a solution of C  can be obtained 

(see Mauer and Ott for details). On the other hand, the expected replacement cycle, T  (years), 

can be computed, once C  is determined: 
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This expression yields the mean time it takes for Ct to reach C , conditional on having started 

at CN.  

 Mauer and Ott carry out some sensitivity analysis on the optimal replacement policy. 

They specify the relation between salvage value and cost as S(Ct)=κ 1
tC− , with κ>0. They find, 

for example, that an increase in the volatility of equipment cost σ~ , makes the firm replace less 

often.6 Hence, C , T  and V(CN) increase. Similarly, for an increase in the price of new 

equipment, P. 

Mauer and Ott also explore the effect on the firm's replacement decisions of 

uncertainty about a technological change that lowers the initial maintenance and operation cost 

of new equipment, CN. It is assumed that the technological breakthrough follows a Poisson 

process. Although the firm will not replace the existing equipment right after the innovation 

takes place, the value function V(.) will change because the firm rationally anticipates that at 

the next replacement CN will be lower.  

 The authors carry out some simulations to measure the impact of changes in CN and 

the parameter of the Poisson process ρ on the expected replacement cycle. They find that, 

for a technological breakthrough that lowers the initial maintenance and operating cost by 

10 percent, a jump of ρ from 0 to 0.5 increases the expected replacement cycle by over 40 

percent. Intuitively, the firm keeps the deteriorating equipment longer as ρ increases, 

hoping that technological uncertainty about a reduction in initial operating and maintenance 

cost will be rapidly resolved.  

 

                                                                                                                                                                                                      
5 More specifically, Mauer and Ott consider a real options set-up, in which the risk of operation cost dW can 
be spanned by traded financial assets. And, therefore, r is a riskless rate. In Ye's model no point is made as to 
whether r is a riskless rate or not. So one can simply assume that agents are risk neutral.  
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3 Other Studies on the Demand for Durable Goods 

Given that durable goods provide a stream of services over time, the literature has 

typically modeled the demand for these goods in the context of an inter-temporal utility 

maximization process. An example of such an approach is Parks (1974). The author develops 

a continuous-time model in which at t=0 an individual must choose a consumption and 

investment path for his/her indefinite future, given a certain income stream and known price 

paths for a perishable consumer good and for a durable good.7 Other references of this sort of 

models are Malcomson (1975) and van Hilten (1991)an extension of Malcomson’s work. 

The most recent literature has postulated that the demand for durable goods can be modeled as 

a dynamic programming problem, in which changes in the stock of capital take place at 

optimal stopping times, as previously discussed..  

 In the field of macroeconomics, the demand for durable goods has been the focus of 

several articles. In particular, one topic that has been extensively studied is the impact of 

transaction costs on the frequency of purchase.8 Early studies postulated that changes in the 

aggregate stock of capital could be well explained by the stock adjustment model. Specifically, 

this assumes the existence of quadratic adjustment costs, so that the change in the stock of 

capital in period t is a fraction η of the gap between the current and the desired stock. Bar-Ilan 

and Blinder (1992) point out that this approach has two flaws. First, empirical studies have 

come up with estimated values of η that seem improbably low to represent speed of 

adjustment. Second, the assumption that marginal adjustment costs are zero at zero and 

increasing thereafter seems, in general, hard to believe.  

                                                                                                                                                                                                      
6 In the spirit of the real options literature, an increase in volatility makes the option of waiting more valuable.  
7For an example in discrete time, see Roberts (1978). 
8Explicit transaction costs, such as large commissions, or implicit transaction costs, such as the search for 
information on performance characteristics and prices of heterogeneous durable goods.  
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 In the last few years the literature has moved away from the stock adjustment model 

and emphasized the lumpiness of expenditure on durable goods (e.g., Bar-Ilan and Blinder, 

1992; Caballero and Engel, 1991, 1999; Caballero, 1994; Cooper, Haltiwanger, and Power, 

1999). In particular, individuals and firms seem to update their durable stock infrequently, and 

when they do so, their expenditures are large.  

 One possible explanation is that, durable goods are replaced according to an (S, s) 

policy (see, for example, Caballero and Engel, 1991, 1999). That is, when the durable stock 

depreciates to some lower bound, s, a purchase is made to increase the durable stock to S, the 

upper bound. If the stock remains above s, it is optimal to do nothing. And, therefore, agents' 

behavior is strictly inertial within the band (S, s). In the limit as transaction costs vanish, the 

levels of s and S should coincide. An alternative, but somehow similar, approach is presented 

by Martin (2001). Based upon Grossman and Laroque (1990)'s set-up, the author develops a 

model where agents employ an optimal stopping rule for the purchase of durable goods 

defined by two boundaries, and an optimal returning point.  

 The fields of marketing and economic psychology have also contributed to the 

analysis of the acquisition of consumer durable goods. This literature has focused primarily 

on information search and decision making, planning of purchases and the acquisition 

sequence of durable goods, post-purchase behavior (disposition), and dissatisfaction and 

complaint behavior. Progress has been also made on determining what factors affect 

replacement decisions.  

 In particular, several studies have looked at the importance of demographic and 

lifestyles variables, perceived obsolescence, styling and fashion, prices, environmental 

awareness, and uncertainty, among other variables, on the likelihood of replacement. See, 
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for example, Hoffer and Reilly, 1984; Bayus, 1988, 1991; Antonides, 1990; Bayus and Gupta, 

1992; Cripps and Meyer, 1994; Marrel, Davidsson and Garling, 1995. 

4 An Empirical Application of Replacement of Home Appliances 

This section is divided into three parts. In section 4.1 we estimate replacement 

models for refrigerators and water heaters using a sample of U.S. households from the 

Residential Energy Consumption Survey (RECS). Based upon our estimation results of 

Section 4.1, in Section 4.2 we test the dependence of replacement decisions across 

appliances. Finally, in section 4.3 we develop a more general model where households 

consider the replacement of more than one appliance at a time.  

4.1 A Replacement Model 

 Fernandez (2000) shows that the probability density function (p.d.f.) of the first 

passage time for the stochastic process xt, T, is given by: 

 gT(t|b, σ, x , x*)= 
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where x  is given by the implicit function H( x , b, Φ2)≡1+λ(rC
~

+x*− x )−exp[λ(x*− x )]=0, 8 

is the positive root of the characteristic equation (1/2)σ2p2+bp−r=0, and the parameters b 

and σ2 come from the dynamics of xt, dxt = bdt + σdWt, as described in Section 2.1. 

 In order to calibrate our model, we take a sample from the Residential Energy 

Consumption Survey (RECS). The RECS is a statistical survey of the U.S. Department of 

Energy that collects energy-related data for occupied primary housing units in the 50 states 

and District of Columbia. Conducted triennially since 1978, it provides information on the 

use of energy in residential housing units in the United States. This information includes 

the physical characteristics of the hous ing units, the appliances utilized, including space 
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heating and cooling equipment, demographic characteristics of the household, the types of 

fuels used, and other information that relates to energy use. The RECS also provides energy 

consumption and expend itures data for natural gas, electricity, fuel oil, liquefied petroleum 

gas (LPG), and kerosene. 

Data for the RECS are obtained from three different sources: on-site 30-minute 

personal interviews conducted in the housing unit; telephone interviews with the rental 

agents of those rented housing units that have any of their energy use included in their rent; 

and, mail questionnaires mailed to the housing units' energy suppliers asking them to 

provide the units' actual energy consumption. Our sample was taken from the RECS 1990, 

which contains approximately 5,100 households, out of which 3,398 are homeowners.  

One shortcoming of the RECS is that it does not provide information on 

replacement times. It only records current equipment ages in intervals. For example, 

category 01=equipment is less than 2 years old; category 02=equipment is between 2 and 4 

years old, etc. Therefore, the model parameters cannot be estimated directly from the p.d.f. 

of replacement times. Instead, the p.d.f. of equipment age, U, must be used. It can be shown 

that an asymptotic approximation for the p.d.f. of U can be obtained from the renewal 

theorem (see Fernandez, 2000, for the technical details): 
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where Φ(.) represents the cumulative distribution function of a standard normal, and x  is 

the solution for H( x , b, Φ2)=0.  

 Characteristics of household 'i' are incorporated into the model through ( x−x*)i/σi: 
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where ββ  is a vector of parameters, and zi represents a vector of household characteristics. 

This functional form ensures the non-negativity of ( x−x*)i/σi. For simplicity, the ratio bi/σi 

is assumed to be constant across households, and equal to b/σ. Under these extra 

assumptions, an asymptotic approximation to the likelihood function of Ui, the age of 

current equipment of household ‘i’, is given by: 
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where b
~

≡b/σ.  

 For a sample of n independent observations, the likelihood function of equipment age 

is given by9: 
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 Estimates of ( x−x*)i, bi, Φi for household 'i' can be obtained from equation (22), 

once the estimates for b~  and ββ  become available: 

 1 + λi(r iC
~

+(x*− x )i) = i*i )x(x e −λ   i=1, 2, ..., n   (22) 

where λi represents the positive root of the characteristic equation (1/2)σi
2p2+bip−r=0. 

                                                                 
9 When estimating the likelihood function we took account of the discreteness of the data. That is to say, that 
it is necessary to compute the probability of falling into each category.  
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Our application deals with replacement of refrigerators and water heaters. We first 

estimate separate replacement models for each appliance, and then test whether 

replacement decisions are correlated. Figure 2 illustrates how replacement sales have 

become a sizeable share of total annual shipments of refrigerators and electric water 

heaters. Indeed, this holds for all consumer durable goods with high market penetrations.  

[Figure 2 about here] 

Based on the annual average operation costs of new refrigerators from the RECS, 

and on the "Consumer Reports" (December 1992), we estimated the average price of a new 

refrigerator in 1990 to be $1,355. Our estimate of the annual operating and maintenance 

costs of a new refrigerator is $105, which corresponds with the annual operation cost of 

equipment aged two years or less reported in the RECS. Our estimate of the average price 

of a new electric water heater in 1990 is $662, and it is based on information provided in 

the RECS 1990 and the "National Construction Estimator" (1990). From the RECS 1990 its 

annual operating and maintenance cost is estimated to be $241.  

The regressors in the replacement model of refrigerators are a constant, the age of 

the head of the household (per 10 years), monthly income (per $10,000), a dummy variable 

that takes on the value of 1 if the household lives in an urban area and 0 otherwise, the size 

of the refrigerator (cubic feet), family size (number of members), and a dummy variable 

that takes on the value of 1 if the household has a poor credit rating and 0 otherwise. 

Households are classified as having a poor credit rating in case they have received aid in 

terms of food stamps, unemployment benefits or income from AFDC (Aid to Families with 

Dependent Children) during the 12 months prior to the conduction of the survey. 

Table 1 presents the estimation results for the refrigerator data. The exogenous 

variables that are statistically significant at the 5 percent level are the age of the head of the 
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household and the size of the refrigerator. In particular, the older the head of the household, 

the less likely he/she will replace his/her piece of equipment. It is possible that older people 

have higher discount rates or, alternatively, that their preferences may change more slowly. 

By contrast, a greater refrigerator size accelerates replacement. This may be due to the fact 

that size is highly correlated with operating costs, after controlling for income, family size, 

and electricity rate, among others factors, as Table 2 shows. Although income and family 

size are not statistically significant at the conventional levels, they have the expected sign. 

That is, as income and family size increase, the gap between x  and x* shrinks making 

replacement more likely.  

[Tables 1 and 2 about here] 

The estimation results for water heaters are presented in Table 3. The regressors are 

in this case a constant, age of the head of the household, monthly income, a dummy 

variable for those households that live in an urban area, a dummy variable for those 

households for which natural gas is available in their neighborhood, the tank size of the 

water heater (gallons), family size, and a dummy variable for those households with a poor 

credit rating. As we see, the regressors statistically significant at the 5 and 10 percent levels 

are the age of the head of the household, natural gas availability, tank size, and the poor 

credit rating dummy.  

[Table 3 about here] 

As before, replacement is less likely as the head of the household becomes older. 

Natural gas availability and a poor credit rating have the same effect. In particular, natural 

gas availability might delay replacement because of differentials in operation costs between 
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natural gas and electric powered equipment. Indeed, those households that would like to 

reduce operation costs by switching from electric to natural gas equipment cannot do it 

when natural gas is not available in their neighborhoods. Consequently, replacement of 

electric equipment becomes less likely. A poor credit rating delaying replacement is self-

evident. Like in the case of refrigerators, a larger equipment size makes replacement more 

likely because of its high and positive correlation with operation costs.  

Table 4 presents estimates for the difference between the threshold operation cost x  

and the operation cost of new equipment x*, equipment lifetime, the drift and the standard 

deviation of the arithmetic Brownian process, b and σ, respectively, and for the total 

expected discounted costs for both appliances. Our estimate of the expected lifetime of a 

refrigerator is approximately 16.5 years. If we start up with new equipment, the expected 

total discounted cost amounts to $4,271.87. We should point out that our lifetime estimate 

is fairly close to that of the industry: an average lifetime of 16 years with a range of 10 

(low)-20 (high) years (source: "A Portrait of the U.S. Appliance Industry 1992", Appliance, 

September 1992, Dana Chase Publications). For water heaters, our estimates of the 

expected lifetime and expected total cost are 13.7 years and $5,526.6, respectively. Like for 

refrigerators, our estimate of equipment lifetime is quite close to that given by the industry 

in 1992: 14 years with a range of 10 (low)-18 (high) years.  

[Table 4 about here] 
 

 The overall fit for both models is quite good, as Table 5 shows. The percent error 

for all age categories of refrigerators is below 10 percent, being the greatest for equipment 

that are less than 2 years old, and between 5 and 9 years old. For water heaters in turn, the 

greatest percent error is below 5 percent in absolute value. Finally, Table 6 shows the 
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impact of marginal changes in the value of the regressors on the probability of replacement 

over time. For example, a cubic-foot increase in refrigerator size leads to an increase of 

9.93 per cent in the probability of replacement within 20 years. The overall probability of 

replacement is very small within the first 9 years, as we might have expected.  

[Tables 5 and 6 about here] 
 
4.2 Are Replacement Decisions Independent? 
 
 In the previous section we modeled household decisions to replace a given set of 

appliances independently. However, it may be the case that such decisions are indeed 

correlated. Theoretically, the demand for durable goods is derived from a utility function 

that depends on the services these goods provide over time. Therefore, it would not be 

surprising to observe some degree of either substitution or complementarity in replacement 

decisions of different durable goods. 

 In order to test the hypothesis of independent replacement decisions for an 

individual household, we constructed a set of generalized residuals (Gourieroux and 

Monfort, 1987) based on the difference between observed and expected elapsed duration.  

 Equation (18) is derived from the fact that an asymptotic approximation of the p.d.f. 

of elapsed duration U, is given by: 

 
µ

=
)u(S

)u(f T
U   u≥0      (23) 

where ST(u) is the survival function of completed duration or equipment lifetime, and µ is 

the expected lifetime (see, for example, Lancaster, 1990, pages 91-93).  

 From (23), the kth moment around the origin of elapsed duration (current equipment 

age) is given by: 
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by integration by parts. The term µk+1 ' is the (k+1)th moment around the origin of 

completed duration t, where µ1=E(t)≡µ.  

 From equation (24), and from the fact that for our model the moment generating 

function of completed duration is MT(t)= exp 




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given that it can be shown that the variance and expected value of completed duration are 

3

2*

b
)xx( σ−

 and 
b

xx *−
, respectively.  

 In order to test the independence of replacement decisions, we utilized a score test 

of the form: 
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where i1ω̂  and i2ω̂  represent the estimates of the generalized residuals of appliance 1 

(refrigerator) and 2 (water heater) for household i, respectively. This test is asymptotically 

distributed as chi-square with 1 degree of freedom (see Gourieroux and Monfort for more 

details).  
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 Each residual is computed as the difference between the observed equipment age 

and its expected value, evaluated at the parameter estimates of Section 4.1:  

 
2
i

ii
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i

imi
b̂2

b̂)*xx(ˆ
uˆ

∧
−+σ

−=ω   m=1, 2; i=1, 2,.., n   (27) 

 In order to compute i1ω̂  and i2ω̂ , we had to approximate equipment age. As 

described earlier, our data set only provides equipment age in intervals. Therefore, for the 

first category, "less than 2 years old", we took u=1 year. That is, the mid-point between 0 

and 2. Similarly, for the categories "2-4 years old", u=3 years; "5-9 years old", u=7; "10-19 

years old", u=14.5 years. The fifth age category, however, gathers all equipment aged 20 

years or older. In this case, we had to estimate at which age the survival probability 

becomes negligible for each appliance. Based upon our estimation results of Section 4.1, 

we found that at age 60 the probability of survival of a water heater equals 0.055 percent 

(5.5e-4), whereas at age 55 the probability of survival of a refrigerator is 0.09 percent (9 e-

4). Therefore, for the last age category, we took u=40 for water heaters, and u=37.5 for 

refrigerators.  

 Only those households that own both appliances are considered in our computations. 

We found positive correlation among residuals of refrigerators and water heaters: 11.6 

percent, and .n=20.8, being the 95-percent critical value for a Π2 (1) equal to 3.84. That is, 

we reject at the 95-percent confidence level the null hypothesis of independence of the 

residuals of the replacement models of refrigerators and water heaters. In addition, the 

positive correlation between the residuals indicates that unobservable factors that either 

accelerate or delay replacement of one appliance will also affect the other in the same 

direction.  
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4.3 Estimating Replacement Decisions Simultaneously: Minimum and Maximum 

Stopping Times 

 Given the evidence of the previous section, we now model replacement decisions of a 

set of appliances simultaneously rather than each one in isolation. In order to do so, we resort 

to the concept of stopping time. Although this has been already used in previous sections of 

this paper, we now provide a formal definition.  

 Let t1,  t2, ..., be a sequence of independent random variables. An integer-valued 

random variable T is said to be a stopping time for the sequence t1, t2, .., if the event {T=n} is 

independent of tn+1, tn+2 , for all n=1, 2, ... This means that we observe the tn's in sequential 

order and N denotes the number observed before stopping. If T=n, then we have stopped after 

observing t1, t2, ..., tn and before observing tn+1, tn+2, ...(see Ross, 1996, page 104).  

 
 Let us now consider two independent stopping times, T1 and T2, with corresponding 

cumulative density functions 
1TF and 

2TF , and density functions 
1Tf and

2Tf . For example, let us 

think of two home appliances whose times of either technical failure or obsolescence are 

independent of one another. This is the assumption in Section 4.1. But, how do we reconcile 

the assumption of independent stopping times with the evidence in Section 4.2? One way to 

go about it is by thinking that, although stopping times are independent, households replace 

their appliances jointly.  

 For instance, a household might wait and replace its obsolete microwave oven until the 

cutting-edge technology of refrigerators becomes available at the market place.10 Or, 

alternatively, the household might decide to replace its microwave oven and refrigerator at 

once, as soon as the technology of the former falls behind the new trends.  

                                                                 
10 This might be also the case if the durable goods present some degree of substitution. For example, the 
replacement of a stereo system might not be as urgent given that audio CDs can be played on the personal 
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 If that is so, then we can find the minimum and maximum bounds for the replacement 

time of both appliances. Let Z1=max(T1, T2) and Z2=min (T1, T2). The probability density 

function of Z1 and Z2 are given by: 

 )z)T,T(max(P)z(F 21Z1
≤=  

  =P(T1≤z, T2≤z) 

  =P(T1≤z) P(T2≤z) 

by independence of T1 and T2. 

 Then:  

 )z(F)z(F)z(F
211 TTZ =         (28) 

From (28) it follows that the probability density of Z1 is: 

 )z(f)z(F)z(F)z(f)z(f
21211 TTTTZ +=   z≥0    (29) 

 Similarly, for the minimum: 

 )z)T,T(min(P)z(F 21Z2
≤=  

  =1−P(min(T1, T2)>z) 

  =1−P(T1>z, T2>z) 

  =1−P(T1>z) P(T2>z)   by independence of T1 and T2. 

  = 1−(1− )z(F
1T )(1− )z(F

2T ) 

  = )z(F
1T + )z(F

2T − )z(F
1T )z(F

2T  

 But from (28) )z(F)z(F)z(F
211 TTZ = , then: 

 )z(F)z(F)z(F)z(F
1212 ZTTZ −+=       (30) 

                                                                                                                                                                                                      
computer. On the other hand, a household's postponing the purchase of new durable goods might be indicative 
of borrowing constraints.  
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Therefore, the density function of the minimum is given by: 

 )z(f)z(f)z(f)z(f
1212 ZTTZ −+=   z≥0    (31) 

 One way to model joint replacement decisions is by assuming that replacement will 

take place somewhere between the minimum and the maximum stopping times (Figure 3). 

Therefore, we can define a new random variable W=Z2−Z1 that denotes the time elapsed 

between the minimum and the maximum stopping times. Intuitively, households might replace 

both appliances right after anyone of them either becomes obsolete or breaks down. Or, 

alternatively, they might as well wait until both appliances render inadequate to their needs. 

The exact time at which households will replace both appliances is therefore random, and will 

be located somewhere between Z1 and Z2.  

[Figure 3 about here] 

 Now, in order to determine the distribution function of the W, we make use of 

convolutions: 
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 Now, given that both Z1 and Z2 are stopping times, Z2 is independent of Z1. Therefore, 

the distribution function of W boils down to: 
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where fW(w) is the convolution of )z(f 1Z1
 and )w(f

2Z .  

 It remains to characterize fW(w) based upon the distribution functions of our model of 

Section 4.1. According to equation (17), T1 and T2 are distributed as: 
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with cumulative distribution functions:  
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where Φ(.) represents the cumulative distribution function of a standard normal, and jx  is 

given by the implicit function H( jx , bj, 
2
jσ )≡1+λj(r jC

~
+ *

jx − jx )−exp[λj(
*
jx − jx )]=0, λj is 

the positive root of the characteristic equation (1/2) 2
jσ p2+bjp−r=0, and the parameters bj 

and 2
jσ �come from the dynamics of xjt, dxjt =bj dt + σj dWjt.  

 From (29), the distribution function of the maximum is given by: 
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 In turn, from (31), the distribution function of the minimum is given by: 
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where )z(f
1Z  is given by (35).  

 Now suppose we have a cross section of n independent pairs of stopping times for n 

households. Then the likelihood function of the sample is given by: 
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where wi=Z2i−Z1i, Z2i=max(T1i, T2i) and Z1i=min(T1i, T2i).  

 How do we go about approximating 11iZ1
0

Z dz)zw(f)z(f
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+∫
∞

? We know, from our 

estimation results of Sections 4.1 and 4.2, that the probability mass for a stopping time greater 

than some constant M, large enough (say M=60), goes to zero. Therefore the above improper 

integral can be suitably truncated: 
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Therefore the log likelihood function of the sample becomes: 
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 In turn the integral i1i1iZi1

M

0
Z dz)zw(f)z(f

i2i1
+∫  can be approximated by some numeric 

method, such as the trapezoidal rule:11 

 ( )m2m210
1

11iZ1

M

0
Z yy2...y2y2y

2
z

dz)zw(f)z(f
i2i1

+++++
∆

≈+ −∫   (39) 

where 
m
M

z1 =∆ , )zw(f)z(f)z(gy 1iZ1Z1 i2i1
+≡= , and g(z1k)=g(k∆z1), k=0, 1, 2, ..., m.  

 As in Section 4.1, the parameters of the distributions of Z1i and Z2i, i=1, 2,..., n, may be 

modeled as functions of household characteristics and appliances features.  

5 Summary and conclusions  

 In this paper we focused on micro replacement decisions. We surveyed some 

representative models of the recent literature, and discuss their empirical testability. In 

particular, we went through papers where the replacement problem has been tackled by the 

theory of stochastic processes and stochastic calculus: Rust (1985, 1987), Ye (1990), and 

Mauer and Ott (1995). In addition, we briefly referred to the state of the art of demand for 

durable goods modeling in macroeconomics and other fields.  

 The core of this paper is the empirical results for replacement of home appliances in 

the United States, and the theoretical model of multiple replacement decisions. Based upon 

individual replacement models for electric water heaters and refrigerators, we concluded 

that demographics and appliance features might either accelerate or delay replacement. In 

addition, we constructed a test statistic that led us to conclude that replacement decisions 

might be correlated across appliances. Based upon this evidence, we enriched our model by 

allowing households to replace a set of appliances simultaneously rather than each one in 

                                                                 
11 The area of the first trapezoid is 1/2(y0+y1)∆z1, the area of the second trapezoid is 1/2(y1+y2)∆z1, etc. up to 
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isolation. Although the estimation process of this extension may be computationally 

intensive, it is still tractable.  
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FIGURES 

Figure 1a Penetration of Home Appliances 

 

 

 

 

 

 

 

 

Source: U.S. Department of Energy.  
 

Figure 1b Number of PCs by Annual Household Income in the United States, 1997 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: U.S. Department of Energy.  
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Figure 2  Estimated Annual Replacement Units as a Percentage of Total Annual Shipments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Own elaboration based upon the distribution of lifetime equipment calibrated with the RECS data, 
and data on annual shipments of appliances from the Statistical Abstract of the United States, various issues. 
 
 

Figure 3  Joint Replacement Decisions 
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TABLES 
 

Table 1. Replacement Model for Refrigerators 
 

Regressor Parameter 
estimate 

Standard error Asymptotic t-
statistic 

Constant 2.529 0.145 17.444* 

Age head of household (per 10 years) 0.099 0.013 7.679* 

Monthly income (per $10,000) -0.006 0.010 −0.538 

Urban area dummy (=1 if yes) 0.046 0.040 1.149 

Family size (number of members) −0.010 0.015 −0.703 

Refrigerator size (cubic3) −0.040 0.006 7.218* 

Poor credit rating dummy (=1 if yes) −0.067 0.082 −0.819 

Standardized drift, b/σ 0.624 0.032 19.375* 

 
Log of likelihood function at convergence =−3,612 
Number of observations   = 2,440 
________________ 
*: Statistically significant at 5% level for H0: β=0 against H1: β≠0. 
 

Table 2. Refrigerator Monthly Operating Cost Modeled as a Linear Function of Exogenous Regressors 
 

Regressor Parameter estimate Standard error t-statistic 

Constant  -48.145 7.567 −6.362* 

Monthly income (per $10,000) 1.847 0.679  2.721* 

Urban area dummy (=1 if yes) 7.831 2.707  2.893* 

Family size (number of members) −0.634 0.831 −0.764 

Refrigerator size (feet3) 5.053 0.348  14.541* 

Average electricity rate ($/kwh) 0.947 0.056  16.906* 

 
R2=0.194, Adjusted R2= 0.193 
Number of observations=2,440 
___________________ 
*: Statistically significant at 5% level for H0: β=0 against H1: β≠0. 
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Table 3   Replacement Model for Electric Water Heaters 

 
Regressor Parameter estimate Standard error Asymptotic t-

statistic 
Constant 1.249 0.179 6.939* 

Age head of household (per 10 years) 0.137 0.018 7.449* 

Monthly income (per $10,000) -0.069 0.140 −0.491 

Urban area dummy (=1 if yes) -0.064 0.059        −1.086 

Natural gas availability (=1 if yes) 0.219 0.057  3.830* 

Tank size (gallons) −0.004 0.002   −1.757** 

Family size (number of members) 0.146 0.090 1.617 

Poor credit rating dummy (=1 if yes) 0.039 0.021    1.866** 

Standardized drift, b/Φ 0.516 0.025 20.615* 

 
Log of likelihood function at convergence =−2,612.9 
Number of observations   = 1,057 
________________________ 
* : Statistically significant at 5% level for H0: β=0 against H1: β≠0. 
** : Statistically significant at 10% level for H0: β=0 against H1: β≠0. 
 
 

Table 4. Estimates of x −x*, b, Φ, Expected Equipment Lifetime and Total Discounted Cost 
 

Mean Standard deviation Estimates 
Refrigerator Water 

heater 
Refrigerator Water 

heater 
x −x* ($) 243.2 139.9 42.5 26.1 

b ($) 16.3 11.3 6.5 4.7 

Φ ($) 26.1 21.8 10.4 9.2 

Expected lifetime (years) 16.5 13.7 4.3 3.4 

Total discounted cost ($) 4,271.6 5,539.3 596.8 309.6 
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Table 5. Fitted and Actual Frequency for Each Age Category 
 

Fitted Actual Percent error Age Category 
Refrigerator Water 

heater 
Refrigerator Water 

heater 
Refrigerator Water 

heater 
Less than 2 years old 0.124 0.156 0.136 0.153  8.8 −1.9 

2-4 years old 0.185 0.228 0.187 0.227  1.1 −0.4 

5-9 years old 0.289 0.289 0.270 0.299 −7.0 3.3 

10-19 years old 0.311 0.242 0.318 0.234  2.2 −4.7 

Over 20 years old  0.090 0.084 0.088 0.086 −2.3 2.3 

 
Table 6 Impact on the Probability of Replacement due to Marginal Changes in the Regressors  

 
 Time Period (years) 

1-3 7-9 1-20 Regressor 
Refrigerator Water 

heater 
Refrigerator Water 

heater 
Refrigerator Water 

heater 
Age of head of household 

(per 10 years) 
−5.61e-4 −0.065 −0.033 −0.062 −0.256 −0.366 

Monthly income 
(per $10,000) 

1.07e-6 0.003 0.002 0.031 0.016 0.285 

Equipment size (*) 2.17e-4 1.90e-4 0.013 0.002 0.099 0.011 

Probability of replacement 4.4e-4 0.011 0.088 0.131 0.730 0.796 

 
Notes: Marginal impacts are evaluated at sample means. (*): Equipment size is measured in feet for 
refrigerators and in gallons for water heaters. 

 


