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Abstract

Current sales of most consumer durable goods are accounted for by replacements.

However, only in recent years has the economic literature provided a more rigorous analysis of

replacement purchases by incorporating elements of dynamic programming and of the theory of

stochastic processes.

This paper is an empirical study of household replacement decisions modeled as an

optimal stopping rule. Using data from the ‘Residential Energy Consumption Survey’ (RECS) of

the U.S. Department of Energy, we conclude that demographic variables, operation and

replacement costs, and equipment characteristics may affect ownership spells of appliances such

as electric heaters and central air conditioners.
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I. Introduction

The high penetration of consumer durable goods has led current sales to consist mostly of

replacement purchases. For example, estimates of the U.S. Industry for 1995 show that, on

average, about 65 per cent of appliances sales were accounted for by replacements (‘Appliance’,

Dana Chase Publications, September, 1995).1 Nevertheless, the complexity involved in the

timing of replacement purchases of consumer durable goods, and the difficulty of finding

appropriate data have made both theoretical and empirical research in this area difficult. In

particular, because of the longevity of durable goods, replacement purchases are infrequent, and

they usually take place prior to irreparable failure. This makes conventional statistical methods

inadequate to analyze replacement decisions. In addition, data suitable for empirical analysis is

hard to find. The very few studies conducted to date are based on very specific surveys that are

not publicly available.

Only in recent years has the economics theory come up with a more rigorous analysis of

the consumer’s decision to replace durable goods. In particular, elements of dynamic

programming have been combined with the theory of stochastic processes to give rise to

structural models that better capture the dynamic elements involved in replacement decisions

(e.g., Rust, 1985, 1987; Ye, 1990; Mauer and Ott, 1995). Moreover, in the field of applied

econometrics, duration models have proven to be useful tools to analyze the inter-temporal

relationship between the probability of replacement, demographic variables, and characteristics

of a particular consumer durable (e.g., Antonides, 1990; Gilbert, 1992; Raymond, Beard and

Gropper, 1993).

This article presents an empirical application of a structural replacement model in which

the optimal replacement policy is found from the optimal stopping technique of applied statistics

(e.g., Rust, 1985, 1987, and Bertsekas, 1976). Our discussion focuses on replacement decisions
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of heating systems and central air-conditioners utilizing a sample of households from the

‘Residential Energy Consumption Survey’ (RECS) of the U.S. Department of Energy. We model

replacement rates as a function of demographic variables, equipment characteristics, and

operation costs. Our results indicate that variables such as the age of the head of the household,

natural gas availability, fuel price, and equipment characteristics may affect optimal replacement

decisions.

The contribution of this article is threefold. First, it presents the first empirical study on

the determinants of appliances replacement for the whole United States. Second, using elements

of the theory of stochastic processes, duration analysis, and renewal processes, it derives a

testable structural specification that has not been previously presented in the existing literature.

By contrast, the empirical studies found to date are reduced-form models that do not come from

any optimization process. Third, our empirical findings are potentially relevant to policy making

and production planning. In particular, the impact of efficiency improvementstranslated into a

reduction in operation and maintenance costson replacement rates can be quantified by our

model.

This article is organized as follows. In section II, we briefly discuss previous empirical

studies on the consumer’s decision to replace durable goods. In section III, we present a

theoretical model for replacement decisions (section 3.1), and derive an econometric

specification for it using the concept of the ‘first passage time’ of the theory of stochastic

processes (section 3.2). In section IV, we describe the RECS data (section 4.1), derive a

replacement model suitable to these data using the model of section III and basic elements of the

renewal theory (section 4.2), and present our estimation (section 4.3). Finally, in section V we

present our main conclusions and discuss extensions to pursue in future research.
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II. Related Literature

The most recent literature on consumer durable goods replacement provides three

empirical studies closely related to ours: Antonides (1990), Gilbert (1992), and Raymond, Beard,

and Gropper (1993). These three papers analyze consumer durable goods replacement decisions

by utilizing duration models. In particular, Antonides looks at data on replacement of washing

machines from a survey in the Netherlands from December 1982 through February 1983. He

finds that failure rate is increasing with equipment age, household size, and income, and is

decreasing with purchase price.2 Antonides also concludes that including the date of the most

recent equipment repair leads to more efficient parameter estimates, and that expected lifetimes

corresponding with duration-dependent hazard rates are more plausible that those corresponding

with constant hazard rates.

Gilbert analyzes replacement of automobiles in the United States with panel data for the

time period August 1978-December 1984. She considers three different hazard functions:

replacing with a new vehicle (hn), replacing with a used vehicle (hu), and disposing without

replacement (hd). The author concludes that both hn and hd are increasing with income, while the

opposite holds for hu. Race, household size, life stage of the household, education, and car

odometer reading also play an important role in replacement decisions. Gilbert also considers

some macroeconomic variables in her analysis: interest rate, unemployment rate, new car

inflation rate, used car inflation rate, auto maintenance rate, and gasoline inflation rate.

Nonetheless, in most cases, these variables turn out to be statistically insignificant. For example,

higher inflation rates for gasolinea measure of higher operation costsincrease hn but do not

significantly affect hu or hd.
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Replacement of main heating equipment for the state of Alabama was studied by

Raymond, Beard, and Gropper in 1990. The authors' results indicate that the probability of

equipment replacement depends negatively on the age of the head of the household and the

availability of natural gas, and positively on equipment age, and higher than expected household

energy usage.3 Other factors included in the hazard specification are income, a poor credit rating

dummy variable, a urban location dummy, and house square footage. None of these variables,

however, turn out to be statistically significant. As we will see in section 4.2, Raymond, Beard,

and Gropper’s work is particularly relevant to us because it deals with replacement of one of the

appliances we analyze. Indeed, in selecting the relevant variables to be included in our

replacement model for home heaters, we consider those economic variables used by the authors

as well as other factors that seemed relevant given the national scope of our data set.

Before closing this section, we should point out that the three empirical studies described

above use reduced-form duration models that are not derived from any optimization process. By

contrast, the testable specification presented in sections III and IV comes from a structural

duration model that prescribes an optimal replacement policy based on the optimal stopping

technique (e.g., Bertsekas, 1976, or Rust, 1985 and 1987). In particular, given that operation and

maintenance cost of a consumer durable good is increasing with time, we hypothesize that its

dynamics can be described by a Brownian motion with drift. To date, as far as we are aware of,

nobody has tested this assumption empirically.

III. A Structural Duration Model for Replacement of Consumer Durable Goods

Ye (1990) considers a replacement problem where the state of a piece of equipment is

described by the instantaneous maintenance and operation cost, which is assumed to increase

stochastically with equipment physical deterioration. The author assumes that, at any given time,

the household faces two choices: i) continuing to pay rising maintenance and operation cost for
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the deteriorating durable asset; or ii) paying a fixed cost to purchase a new machine with a

guaranteed low initial maintenance and operation cost (secondary markets are neglected). The

household’s objective function is the expected total discounted cost of maintenance and

operation as well as of purchasing, and the optimal replacement rule is defined as a stopping

barrier.

The econometric specification derived below is an extension of Ye (1990)’s replacement

model. In particular, we resort to the concept of the ‘first passage time’ for a stochastic process

to give Ye’s specification an econometric form that can be fitted to our data set.

3.1 The Optimal Replacement Policy Modeled as an Optimal Stopping Barrier

Let us assume that, in order to obtain a fixed level of service from a durable good,

households must incur an instantaneous maintenance and operating cost, x(t). This cost may be

viewed as an indicator of the state of the piece of equipment. In particular, a higher x indicates a

more deteriorated piece of equipment. The evolution of x(t) is described by a Wiener process

with constant drift and variance rate parameters, b and F2, respectively:

dx = bdt + σdw, (1)

where w(t) represents a standard Wiener process. The expected discounted total cost of obtaining

the required service from this piece of equipment is given by:









== ∫

∞
− xx(0)|x(s)dseEK(x)

0

rs , (2)

where x(s) evolves according to (1), r is the discount rate, and x(0) represents the state of the

piece of equipment at time zero. The latter does not necessarily coincide with the state of a new

piece of equipment, x*. For example, it may be the case that our current piece of equipment was

a second-hand purchase or that, when we moved into our current housing unit, equipment was

already installed. The replacement cost is implicitly included in the cost function K(x). If
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replacement occurs at time t, x(t) will be at some state, x  at time t– and it will jump back to x* in

time t+. By assumption, the installation cost of new equipment is a fixed amount, C, and the

scrap value of the previous equipment is zero. When x reaches x , the upper barrier, the total

operating and maintenance cost is given by K( x ). But when that happens, replacement will take

place and then:

K( x )=C+K(x*). (3)

Equation (3), which is called the ‘value matching condition’,4 gives an upper boundary for the

state variable, x. It basically states that the total cost right before the jump, K( x ), equals the total

cost after the jump, K(x*), plus the cost of installing a new piece of equipment, C.

There is no lower bound for x, but K(x) is assumed to be bounded:

lim x→ − ∞K(x)< ∞. (4)

Although this assumption is not necessarily realistic because it allows the instantaneous

operating and maintenance cost to become negative, it avoids the problem of explosive behavior.

The total cost at time t can be expressed as the sum of the instantaneous operating and

maintenance cost over the time interval (t, t+dt) and the continuation region beyond t+dt. That is,

K(x)=xdt+E[K(x+dx)e-rdt]. Using this fact and Ito’s lemma, a second-order differential equation

for K(x) can be obtained:

2

2σ
K´´(x)+bK´(x)−rK(x)= −x, (5)

where K´´(x) and K´(x) stand for the second and first derivatives of K(x) with respect to x,

respectively. Equation (5) is an non-homogeneous second-order differential equation with

constant coefficients, which can be solved with the two boundary conditions (3) and (4). The use

of standard techniques for solving this type of differential equation leads to the following

solution for K(x):
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K(x)=
2

*
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r
b

r
x

r
x -x

C
ee

e
* ++








+

− λλ

λ

, (6)

where 8 is the positive root of the characteristic equation (1/2)F2p2+bp−r=0.

The optimal upper barrier, x , can be found by the ‘smooth-pasting condition’ which

states that, if x  is optimally chosen, then it should solve K´( x )=0. That is,

1+λ(rC+x*− x )= )x(x * −λe . (7)

Given that both functions f1( x )/1+8(rC+x*− x ) and f2( x )/exp[8(x*− x )] are

monotonically decreasing in x  and f1'(.)<f2'(.), they can intersect only once. This implies that x

is unique. Moreover, by the envelope theorem, the optimal barrier is increasing in the rate of

deterioration, b, and in the variance, F2, and is decreasing in the discount rate when b is

sufficiently small (for further details, see Ye (1990)).

3.2. Finding the Probability Density Function of Replacement Times

In the replacement model just described, we look at the trajectory of maintenance and

operation cost from installation of a new piece of equipment until an upper barrierwhich

determines the optimal timing of replacementis reached. This suggests that we can give the

model of section 3.1 an econometric specification by finding the probability density function of

the time elapsed until replacement takes place. That is, the first passage time of the instantaneous

operation and maintenance costs, x, from x* to x .5

Consider the Wiener process, {x(t)} of (1) when the upper barrier, x , is determined by

(7). From the theory of stochastic processes (see Cox and Miller, 1965, pp. 219-221), the

transition probability density function (p.d.f.) of {x(t)}, p(x, t), must be the solution to the

differential equation:

t
p

x
p

b
x
p

2
1

2
2

∂
∂

=
∂
∂

−
∂
∂

σ  (x< x ), (8)
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subject to the boundary conditions:

p(x, 0)=*(x−x*), (9)

p( x , t)=0 (t>0), (10)

where x  is defined by the implicit function H( x , b, F2)/1+8(rC+x*− x )-exp[8(x*− x )]=0.

Equation (8)the Kolmogorov forward equation for a Wiener process with drift and

variance parameters b and F2, respectivelydescribes the evolution of the p.d.f. p(x, t) over

time. Condition (9) states that, at time t=0, p(x, t) is located entirely at the point x=x*, where *(.)

represents the Dirac delta function.6 Condition (10) states that p(x, t) must vanish at x= x  for all

t. That is, the process is terminated if x  is ever reached (i.e., when replacement is optimal).

The p.d.f. of the first passage time for the Wiener process {x(t)}, T, can be obtained once

we find the solution for the density p(x, t) from (8), (9) and (10) (see Cox and Miller, pp. 219-

225, or Lancaster, 1990, pp. 118-121):

gT(t|b, σ, x , x*)= 






 −−−−
=− ∫

∞− t2
bt)xx(

exp
t2

xx
 t)dxp(x,

dt
d

2

2*

3

*x

σπσ
, t≥0. (11)

Its survivor function, GT(t), is given by:

GT(t|b, σ, x , x*)= 






 −−−
Φ







 −
−







 −−
Φ

t
bt)xx(

 
)bxx(2

exp
t
btxx *

2

**

σσσ
, (12)

where M(.) represents the cumulative distribution function of a standard normal, and x  is given

by the implicit function H( x , b, F2)=0.

The moment generating function of T is given by:

gT
*(t|b, σ, x , x*)=exp 








−−

−
)2tb(b

xx 22
2

*

σ
σ

. (13)
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Given that by assumption b>0, all the moments of T exist and can be obtained from

E(Tk|b, σ, x , x*)=(−1)k

0t
k

*k

 t
(t)g 

=








∂

∂
. In particular, the first two moments of T around the origin are

given by:

E(T|b, σ, x , x*)=
b
xx *−

, V(T|b, σ, x , x*)=
3

2*

b
)xx( σ−

. (14)

The econometric specification for replacement times just derived can be interpreted as a

duration model. Indeed, in this case ‘failure’ represents the event of first touching the upper

barrier (i.e., the event of replacing the current piece of equipment), and ‘duration’ is the time

elapsed until this event takes placeif it ever does.7 In addition, this specification is structural

because the upper barrier is not arbitrarily chosen but derived from an optimization problem.

IV Econometric Implementation of the Structural Replacement Model

In this section, we focus on the econometric implementation of the above duration model

for the data contained in the ‘Residential Energy Consumption Survey’ (RECS) of the U.S.

Department of Energy. As explained below, this data set only provides information on ages of a

set of selected appliances the sampled households currently own. However, no information on

ages at which the sampled households have replaced previous equipment is recorded. This

implies that the model parameters cannot be estimated directly from the probability density

function for replacement times in equation (11). Instead, we need to find the probability density

function of equipment ages. As we will see below, the theory of renewal processes provides an

asymptotic approximation to such distribution that can be derived from the probability density

function of replacement times.
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4.1 Description of the Data

Our econometric application focuses on replacement of two home appliances: electric

heating equipment and central air-conditioning equipment. Our sample was taken from the

‘Residential Energy Consumption Survey’ (RECS) 1990. The RECS is a national sample survey

for the United States that has been conducted triennially by the U.S. Department of Energy since

1984. The universe of the RECS comprises all housing units occupied as a primary residence in

the 50 states and District of Columbia. The two major parts by which the RECS is conducted are

the Household Survey and the Energy Suppliers Survey. The Household Survey gathers

information regarding the housing unit through personal interviews with the selected households.

The Energy Suppliers Survey collects data regarding actual energy consumption from household

billing records maintained by the fuel suppliers. The data are gathered by questionnaires mailed

to all suppliers for the selected households.

The Household Survey covers questions on type of the housing unit, year the housing unit

was constructed, space-heating fuels and equipment, water-heating fuels and equipment, air-

conditioning fuels and equipment, cooking fuels and equipment, number, type, age, and size of

refrigerators, inventory of appliances, and demographic characteristics of the occupants of the

housing unit. The information provided by the RECS about the ages of home appliances refers

only to equipment the sampled households currently own. No information is provided about the

age at which previous equipment has been replaced. Purchase prices of the sampled

appliances−proxy for equipment qualityare not recorded either.

Equipment ages are recorded in intervals. To illustrate, consider the question of age of

air-conditioning equipment presented below. The questions about the ages of the other sampled

appliances are analogous.
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[Table 1]

The RECS 1990 contains approximately 5,100 households, out of which 3,398 are

homeowners. Tables 2 presents a statistical summary of some variables contained in the RECS

1990 for homeownersthe ones considered in our estimation for being the most likely to replace

their home appliances.

[Table 2]

4.2 Modeling the RECS Data: An Application of Renewal Theory

Following the literature of renewal theory (e.g., Cox, 1962, pp. 61-65, or Ross, 1996, pp.

98-114), let us consider a population of components–e.g., durable assetswhose failure-time,

Y, is a continuous non-negative random variable with distribution, F, such that F(0)=P{Y=0}<1.

The terms components and failure-time can be given different interpretations depending on the

particular problem under study. In particular, in our model failure is understood as the event in

which a piece of equipment is replaced because its operation and maintenance costs have reached

the threshold x .

Suppose that we start with a new component at time zero. This component fails at time

Y1, and it is immediately replaced by a new component with failure time, Y2. Consequently, the

second failure will occur after a total time of Y1+Y2. This process continues in the same fashion,

so that the failure-time of the τ-th component used is Yτ and the τ-th failure takes place at time

Sτ:

Sτ= Y1+...+Yτ, τ$0, S0=0. (15)

If {Y1, Y2, ...} are independent identically distributed (i.i.d.) non-negative random

variables, with common distribution F, this system is called an ordinary renewal process.
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From the previous section, we see that equipment failure-time is not observable from the

RECS because this only provides information on ages of equipment currently held by the

sampled households. Therefore, the concept of backward recurrence-time or time since the last

replacement is key to find a model specification for our data. If we let Ut be the age of the

component in use at t (see Figure 1, where ‘*’ denotes equipment replacement) then, by virtue of

the renewal theorem, as t64 the p.d.f. of Ut approaches

F(u)-1
(u)f U η

= , u≥0, (16)

where η represents the expected value of Yi assuming an ordinary renewal process. This is a

proper p.d.f. because is non-negative and it integrates to one. The latter result holds because η

equals the integral of the survivor function of Yi,1-F(.), over [0,4).8

Figure 1. Backward Recurrence-Time, Ut

A renewal process for which Y1 has a p.d.f. given by (16) is called an equilibrium (or

stationary) renewal process. Indeed, if a simple renewal process starts in the past (t6 -4) remote

from the time origin (t=0) and it begins to be observed at t=0, the time of the first failure will be

distributed as (16). In other words, an equilibrium renewal process represents an ordinary

renewal process in which the system has been running for a long time before it is first observed.

tUt

*

replacement

*



14

Now consider the replacement model of the previous section, and let T be the time at

which the upper barrier x  is first hit. And, suppose that we have a sequence of hitting or

replacement times, {Tn, n=1, 2, ...}. Under the assumption that equipment lifetimes are

independently and identically distributed, the Tn's can be thought of as being the times at which

events occur in an ordinary renewal process (Ross, 1970, pp. 186).9 Hence, an asymptotic

approximation to the p.d.f. of equipment age, U, can be obtained from (12), (14), and (16):

fU(u|b, σ, x , x*)= 














 −−−
Φ







 −
−







 −−
Φ

− u

bu)xx(
 

)bxx(2
exp

u

buxx
xx

b *

2

**

* σσσ
,

u≥0, (17)

where x  is the solution to H( x , b, F2)=0.

The cumulative distribution function of equipment age or elapsed duration is given by:10

FU(u|b, σ, x , x*) 






 −−
Φ

−
+−−

+=
u
buxx

 
xx

bu)xx(
1

*

*

*

σ








 −−−
Φ







 −
−

+−
−

u
bu)xx(

 
)bxx2(

exp 
xx

buxx *

2

*

*

*

σσ
. (18)

In order to incorporate household characteristics into our analysis, we assume that for

household ‘i’ the expression ( x -x*)i/Fi takes the form:

iσ
i

* )xx( −
=exp(β´zi), (19)

where β is a vector of parameters, and zi represents a vector of household characteristics. This

specification ensures that ( x -x*)i/σi is non-negative. For simplicity, we take the ratio bi/Fi to be

constant across households, and equal to b/F. Under these extra assumptions, an asymptotic

approximation to the likelihood function of Ui, age of current appliance of household ‘i’, is given

by:
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f
iU
(ui| b~ , β, zi)=

( )




















 −β−
β−









 −β
β−

i

ii
i

i

ii
i u

ub~)'exp(
)'exp( b~2exp

u
ub~)'exp(

)'exp( b~
z

z
z

z ΦΦΦΦ , (20)

where b~ ≡b/F.

For a sample of n independent observations, the likelihood function of equipment age is

given by:

f
n21 UUU  ,...,,  (u1, u2, ..., un| b

~ , β, z1, ..., zn)=

( )∏




















 −β−
β−









 −β
β−

=

n

1i i

ii
i

i

ii
i u

ub~)'exp(
)'exp( b~2exp

u
ub~)'exp(

)'exp( b~
z

z
z

z ΦΦΦΦ . (21)

Estimates of ( x -x*)i, bi, Fi can be obtained from the smooth-pasting condition for

household ‘i’ once we have obtained estimates for b~  and β:

1+λi(rCi+(x*- x )i)= i
* )x(x −ieλ , (22)

where 8i represents the positive root of the characteristic equation ½σi
2p2+bip-r=0, i=1, .., n.

However, the likelihood function in (21) cannot be fitted to the RECS data because we do

not observe the equipment ages. Instead, we are given only the intervals into which the age of

each household’s appliance falls. Therefore, the likelihood function to be fitted to the data of

Table 1 takes the form:

L= ∏ ∏ ∏ β−ββ
= = =

n

1i

n

1i

4

2j

d
i1-jUijU

d
i1U

j1 )],b~,|u(F),b~,|(u[F )],b~,|(uF[ zzz

∏
=

−−−−−
n

i 1

dddd1
i4U

4321)],b~,|(uF1[. zβ , (23)

where FU(.) is given by (18), dj=1 if age category = j, with j=1, 2, 3, 4 (for instance, d1=1 if age is

less than two years old, and 0 otherwise), and u1=2, u2=5, u3=10, and u4=20. The ui’s were
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obtained by noting that, if the underlying distribution of equipment age is continuous and times

are grouped into unit intervals so that the discrete observed part is V=[U], with [U] the ‘integer

part of U’; then, P(V=v)=P(u#U<u+1)=FU(u+1)-FU(u). For instance, the probability that a piece

of equipment is between two and four years old is given by P(2≤V≤4)=P(V=2)+P(V=3)+P(V=4),

which equals P(2≤U<3)+P(3≤U<4)+P(4≤U<5)=FU(5)-FU(2).

As before, estimates of ( x -x*)i, bi, Fi can be obtained from the smooth-pasting condition

for household ‘i’ once we have obtained estimates for b~  and β.

Before closing this section, it is important to point out that, since we allow equipment to

be second-hand, duration is interpreted not as a household decision time, but as equipment

lifetime. And, replacement in turn refers not to replacement of several pieces of equipment, but

replacement of the same piece of equipment by different households.11

4.3 Model Estimation and Results

In our econometric application, we focus on replacement of electric heaters and central

air-conditioning equipment. Following Raymond, Beard, and Gropper, we consider only those

sampled households who own their homes, and for whom these are their primary residence.12

The estimation is also carried out conditional on owning an electric heater (main heating

equipment) or a central air conditioner,13 and on knowing the equipment age (i.e., categories 96

and 99 in Table 1 are disregarded). After these adjustments, the sample sizes for electric heaters

and central air conditioners are 505 and 1,245, respectively.

Data on replacement costs were obtained from the ‘National Construction Estimator’

(1990), ‘Consumer Reports’ (1992), and the RECS (1990). In particular, $675 and $992 were

taken as average prices of new electric main heating system and central air-conditioning

equipment in 1990, respectively. 14 Estimates of annual operation costs of new equipment were
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obtained as the average annual usage of electricity in 1990 dollars for the ‘less-than-two-year

old’ category from the RECS: $326 per year for electric heaters and $249 per year for central air

conditioners. Given that we were not able to find good proxies for annual maintenance costs,

they were neglected in our calculations. For simplicity, we took the real interest rate to be the

annual effective real yield of saving deposits in the United States in 1990: 5.84 per cent

(‘Statistical Abstract of the United States’, 1996).

For electric main heaters, we modeled ( x -x*)i/Fi as an exponential function of a constant

term, age of the head of the household (per ten years), nominal monthly income (per $10,000),

home square footage (per thousand square feet), dummy variables for urban location (=1 if

urban), natural gas availability (=1 if available), and poor credit rating (=1 if poor credit

rating),15 price of electricity (cents per kWh) and heating degree days (per thousands, base = 65

Fahrenheit degrees). Our estimates were obtained by the method of maximum likelihood using

the ‘ML’ routine of the statistical package ‘Time Series Processor’ (‘TSP’) 4.4.

[Table 3]

Table 3 shows our estimates. As we see, natural gas availability and age of the head of

the household are positively correlated with replacement timesthe function ( x -x*)i/σi is

increasing in these two variables. This implies that the older the head of the household the less

likely is that he/she will replace his/her electric heating system, and that when natural gas is

available in the household’s neighborhood replacement is also less likely to happen (i.e., the

duration between replacementsreplacement timeis larger). The same conclusions were

reached by Raymond et al. Regarding age of the head of the household, the authors do not

attempt to find the reason-why for such a relationship. We think that two plausible explanations
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are the following. It is possible that preferences of older heads of households change more

slowly. Alternatively, older heads of households may have higher implicit discount rates.

Regarding natural gas availability, Raymond et al. think that the positive association of

this variable and replacement time may be due to differentials in the lifetimes of electric versus

natural gas powered systems. More likely, we think that such a relationship holds because of

differentials in the operation costs of gas versus electric powered equipment. Indeed, electricity

is much more expensive than natural gas: according to the RECS, in 1990 the average price of

natural gas was 0.57 cents/thousand BTU versus 2.19 cents/ thousand BTU for the average price

of electricity. Those households without gas service in their neighborhood cannot switch from an

electric to a gas powered system and, hence, they are more likely to replace electric equipment. 

Table 3 also shows that the variable heating degree days is positively correlated with

replacement time. It is likely that this covariate is capturing some equipment characteristics such

as quality. In particular, electric equipment for colder regions may be more expensive to

replace.16 Unfortunately, the RECS does not provide any information on heating equipment

characteristics other than fuel type. As expected, higher income is associated with a higher

probability of replacement. However, this covariate is not statistically relevant at the standard

levels of significance. This is also the case for the urban location dummy and the price of

electricity. A higher standardized parameter of equipment physical deterioration, b/F, leads to

earlier replacement on one hand, because the higher the standardized drift, the earlier the upper

cost threshold for replacing equipment is reached. On the other hand, from Ye’s set-up we know

that a marginal increase in the (standardized) drift leads to a marginal increase in the upper

threshold, which delays replacement. Consequently, the overall impact of an increase of b/σ on

duration is ambiguous.
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Table 4 shows the summary of our estimates of x-x*, b, F, equipment lifetime, and total

discounted costs, K(x), for all households. Estimates of x-x*, b, and F for household ‘i’ (with

i=1, ...,n) are computed from the smooth-pasting condition (22) using the estimates of ( x-x*)i/σi

and b/F obtained from Table 2. The sample means of x-x*, b, and F are calculated from the

estimates of these parameters averaging over all households. The estimated equipment lifetime

for each household is computed as the ratio of the estimates of ( x-x*)i and bi (see equation 14).

The sample mean of equipment lifetime is obtained by averaging over the estimates for all

households. The estimate of total cost, K(x), for household ‘i’ is computed from equation (6) by

setting x=x*, and plugging in the estimates of x i, bi, and Fi previously calculated. The parameter

x* is taken to be identical for all households and equal to our estimate of annual operation costs

of new equipment. Our estimate of the replacement cost, C, is also taken to be equal for all

households. As before, the sample mean of total cost is obtained by averaging over the estimates

for all households.

As we can see, on average a piece of electric heating equipment is replaced when x -x* is

approximately $99 per year, with a standard deviation of $16 per year across households. The

estimated drift and instantaneous variance parameters have a mean of $5 and $6 per year,

respectively, with corresponding standard deviations of $2 and $1.8 per year. The mean of

expected lifetime equals 21 years with a standard deviation of 5 years. This estimate is plausible

when compared with figures given by the industry in 1992 (see Table 8 at the end of this

section). In addition, the expected total discounted cost is about $6,538 with a standard deviation

of $255. The figures labeled as ‘minimum’ and ‘maximum’ denote the extreme values observed

for the estimates of the table across the sampled households.

[Table 4]
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For central air-conditioning equipment, we modeled ( x -x*)i/Fi as an exponential function

of a constant term, age of the head of the household (per ten years), nominal monthly income

(per $10,000), home square footage (thousand square feet), air-conditioner cooling capacity

(thousand BTU/hour), dummy variables for urban location (=1 if urban) and poor credit rating

(=1 if poor credit rating), price of electricity (cents per kWh) and cooling degree days (in

thousands, base = 65 Fahrenheit degrees). As above, our estimates were obtained by the method

of maximum likelihood using the ‘ML’ routine of TSP 4.4.

Table 5 shows our estimates for central air-conditioning equipment. Important factors for

replacement are age of the head of the household, cooling capacity, and price of electricity. As in

our previous estimation, duration (replacement time) is positively associated with increases in

age of the head of the household. Increases in cooling capacity also reduce the likelihood of

replacement. This result may arise from the fact that replacing with more efficient units is more

costly. The variable cooling degree days does not have much of an impact on replacement

decisions. This result can be contrasted with our conclusions for the previous appliance. Indeed,

the price effect being (possibly) captured now by cooling capacity was picked up by heating

degree days in the case of electric main heaters. The price of electricity is statistically significant

at the 10 per cent level, and has the expected sign. That is, a higher price of electricity leads to

earlier equipment replacement due to its impact on operation costs. Our conclusion about the

standardized drift holds in this case as well.

In Table 6 we present the summary of estimates of x -x*, b, F, equipment lifetime, and

total discounted costs for central-air conditioning equipment. These figures can be interpreted in

the same fashion as those of Table 4.

[Table 5]
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Table 7 shows the goodness-of-fit of our replacement models for electric heaters and

central air conditioners. We report the age counts observed in the RECS data and those predicted

by the model with their corresponding standard errors. T-ratios are calculated as the difference of

the observed count and the fitted count over the standard error of the fitted count for each age

category. Assuming that these t-ratios are asymptotically distributed as standard normal, we

conclude that there is no statistical difference between the observed and fitted age counts for

electric heaters. However, our asymptotic approximation is not that accurate for central air

conditioners. As we see, there exists a statistically difference at the 5 per cent level between

fitted and observed counts for the age categories ‘2-4 years old’ and ‘5-9 years old’. The model

tends to overestimate slightly the number of appliances in these two categories. Hence, assuming

identical renewal processes for the sampled central air conditioners may be a worse

approximation than it is for electric heaters.

[Tables 6, 7, and 8]

V Conclusions and Topics for Future Research

In this empirical article, we have modeled replacement rates of electric heaters and

central air-conditioning equipment as a function of demographic variables, equipment

characteristics, and operation costs using the RECS 1990. Our estimation shows that the age of

the head of the household appears as an important factor to replacement decisions. In particular,

older heads of households tend to replace their heating and cooling equipment later than younger

ones because they may have a higher implicit discount rate. Variables such as income, living in

an urban area, poor credit rating do not appear as statistically significant at the conventional

significance levels. By contrast, operations costs may affect replacement rates. For example, a

higher price of electricity may increase the replacement rates of electric equipment. Equipment

characteristics seem also relevant. Indeed, a higher cooling capacity may delay replacement of
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central air conditioners. Finally, climatic differences across regions of the United States may also

affect households replacement decisions.

As we see, in general, these findings are intuitive and have economic content. In addition,

our estimates of equipment lifetimes are plausible and within the ranges given by the U.S.

industry in 1992 for heaters and air-conditioners lifetimes. Hence, we conclude that our analysis

may be helpful to policy making and production planning. In particular, one interesting

application of our approach is to look at the relationship between energy-efficiency increases

(i.e., decreases in operation costs) and replacement rates. In addition, our model can be useful to

sales forecasting by constructing series of replacement sales from our estimates of equipment

survival probabilities (Fernandez, 1997 and 1998, present some examples on this subject).

Other important point to make is that the econometric specification presented in this

article is obtained from a dynamic optimization process. This can be contrasted with the reduced-

form models found in the existing literature. However, we are aware that our econometric model

has some limitations. First, the drift and variance parameters of the Wiener process describing

the evolution of operation and maintenance costs are constant. This assumption could be relaxed

to consider the case where these parameters depend on the evolution of maintenance and

operation costs over time (e.g., Mauer and Ott, 1995). Second, the replacement models for

heating and air-conditioning equipment were estimated separately ignoring the fact that a

household’s replacement rates may be correlated across different appliances.17 Then, a more

realistic specification should take that into account and postulate a model where the Wiener

processes describing the evolution of instantaneous costs of durable goods are correlated.

Finally, the probability density function of equipment age used in our estimation is an

asymptotic approximation. Indeed, the renewal theorem is an adequate assumption for relatively

old households whose equipment has been replaced several times. The RECS provides the age of
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each sampled housing unit so, in principle, it is possible to resort to estimation by simulation

(e.g., Gourieroux and Monfort, 1996) to find a ‘non-asymptotic’ distribution of equipment age.

In particular, we can simulate a renewal process for each household assuming the date of housing

construction as its beginning.18 So far, we have explored this possibility unsuccessfully due to

computational problems. However, we think this is an interesting idea that we could continue to

pursue in the future.
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Tables

Table 1. About How Old is Your Central Air-Conditioning Equipment?

Age Category

1 Less than two years old

2 2-4 years old

3 5-9 years old

4 10-19 years

5 20 years old or older

96 does not know

99 not applicable

Table 2. Some Demographic Indicators for Homeowners in the RECS 1990

Variable Mean Standard Deviation

Age of head of household (years) 51.5 16.7

Monthly income ($) 3,024.4 1,959.3

Price of electricity (cents/kWh) 81.9 22.5

Cooling degree days (1) 1,279.5 926.4

Heating degree days (2) 4,292.9 2,034.9

Home area (square feet) 2,211.4 1,166.6

Home age (years) 15.6 12.9

Family size (number) 2.7 1.5

Number of observations=3,398.

Notes (1) Cooling degrees days (CDD) is the number of degrees the average daily temperature is above the base
temperature from January 1990 to December 1990. The average daily temperature (ADT) is calculated as the
arithmetic average of the highest and lowest temperatures recorded on a given day. That is, CDD = ADT-base
temperature (65 Fahrenheit degrees). (2) Heating degrees days (HDD) is the number of degrees the average daily
temperature is below the base temperature from January 1990 to December 1990. That is, HDD = base temperature
(65 Fahrenheit degrees) –ADT. Both CDD and HDD are recorded in the RECS.
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Table 3. Parameter Estimates of the Asymptotic Approximation to the Probability Distribution of Age of Electric
Heaters

Covariate Parameter
Estimate

Standard Error
(*)

P-value

Constant term 2.362 0.309 0.000

Age head of household (10 years) 0.076 0.022 0.000

Monthly income ($10,000) -0.217 0.206 0.293

Urban area dummy -0.092 0.080 0.255

Natural gas availability 0.213 0.069 0.002

Home area (1,000 square .feet) 0.038 0.036 0.288

Heating degree days (1,000) 0.065 0.018 0.000

Price of electricity (cents/kWh) -0.233e-2 0.193e-2 0.228

Poor credit rating dummy 0.056 0.132 0.670

Standardized parameter of
physical deterioration (b/F)i

0.832 0.150 0.000

Log of likelihood function at convergence = -726.6
Number of observations =     505
(*): Standards errors computed from the covariance of analytic first derivatives using the Berndt-Hall-Hall-Hausman
(BHHH) algorithm (see Greene, 1996).

Table 4. Summary Statistics for the Estimates of x -x*, b, F, Lifetime and Total Discounted Cost for Electric
Heaters

Estimates Mean Standard Deviation Minimum Maximum

x -x* in $ 98.831 16.342 65.592 150.089

bi in $ per year 5.132 2.084 1.644 13.085

Fi in $ per year 6.168 1.756 1.976 15.723

Expected lifetime (years) 21.251 5.383 11.47 39.895

K(x)i in $ 6,538.52 255.247 6,010.807 7,321.749
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Table 5. Parameter Estimates of the Asymptotic Approximation to the Probability Distribution of Age of Central
Air Conditioners

Covariates Parameter
estimate

Standard error
(*)

P-value

Constant term 0.969 0.217  0.000

Age head of household (10 years) 0.086 0.017  0.000

Monthly income ($10,000) 0.005 0.142 0.970

Urban area dummy 0.027 0.058 0.638

Home area (1,000 sq. feet) 0.030 0.024  0.203

Cooling capacity (1,000 BTU/hr) 0.112 0.010 0.000

Cooling degree days (1,000) 0.026 0.028 0.353

Price of electricity (cents/kWh) -0.226e-2 0.135e-2 0.095

Poor credit rating dummy -0.061 0.166 0.711

Standardized parameter of physical
deterioration (b/F)i

0.634 0.048  0.000

Log of likelihood function at convergence = -1,838.79
Number of observations  =       1,245
(*): Standards errors computed from the covariance of analytic first derivatives using the Berndt-Hall-Hall-Hausman
(BHHH) algorithm (see Greene, 1996).

Table 6. Summary Statistics for the Estimates of x -x*, b, F, Lifetime and Total Discounted Cost for Central Air
Conditioners

Estimates Mean Standard Deviation Minimum Maximum

( x -x*)i in $ 184.824 60.618 120.317 410.941

bi in $ per year 14.266 12.451 4.394 72.013

Fi in $ per year 22.509 19.645 6.934 113.618

Expected lifetime (years) 16.729 4.879 5.706 27.379

K(x)i in $ 6,134.688 792.562 5,227.106 8,854.271
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Table 7. Actual and Fitted Counts of Electric Heaters and Central Air Conditioners

Age category Actual Counts
Electric Heaters

Fitted Counts
Electric
Heaters

t-ratio Actual Counts
Central Air

Conditioners

Fitted Counts
Central Air

Conditioners

t-ratio

Less than 2
years old

44 50.00
(7.074)

-0.848 172 158.11
(8.518)

-1.631

2-4 years old 75 74.74
(7.079)

0.036 258 236.60
(8.523)

2.511

5-9 years old 130 123.72
(7.092)

0.886 303 358.56
(8.630)

6.438

10-19 years
old

183 183.82
(10.818)

0.076 394 371.01
(12.964)

1.774

20 years old or
more

73 72.20
(7.652)

0.105 118 122.01
(9.172)

-0.437

Notes: 1) Standard errors between parenthesis. Each age count, nk, has a binomial distribution with probability, pk, k=1, 2,
3, 4, 5, so that its variance is given by npk(1-pk), with n the sample size. The pi for each category was first calculated for
each household and then averaged over all households. 2) The t-ratios are calculated as (observed count-fitted
count)/standard error fitted count.

Table 8. Life Expectancy (Years) Given by the Industry in 1992

Comfort Conditioning Appliances Low High Average

Warm-Air Electric Furnace 10 20 16

Unitary Air-Conditioners 5 19 12

Source: "A Portrait of the U.S. Appliance Industry 1992." Appliance, September 1992. Dana Chase Publications.

                                                       

Endnotes

1 This estimate considers major appliances (e.g., washing machines, refrigerators, water heaters) and comfort
conditioning appliances (e.g., heating equipment, central air conditioners).
2 The author points out that family size and price can be regarded as proxies for frequency of use and product
quality, respectively.
3 This variable is measured as (u- û )/ û , where u is actual consumption of electricity (average kWh/month), and
û represents the fitted value from a linear regression of u on household's stock of energy-using durable goods and
exogenous factors such as house square footage and housing unit type.

4 See Dixit and Pyndick (1994) for a comprehensive discussion of these concepts.
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5 Let T" be the functional denoting the first passage time of a stochastic process X to a level " ∈ ú, set of real
numbers. T" is defined as T"=inf{t≥0; Xt=α} (see Karatzas and Shreve, 1997).
6 For simplicity, we assume that the household starts with a new piece of equipment whose operation and
maintenance cost is given by x*.

7 For b>0, limt64 GT(t|b, σ, x , x*)= 0. For b<0, there is a probability greater than zero that the upper barrier is never
reached. Specifically, in that case, limt64 GT(t|b, σ, x , x*)=1-exp{2( x −x*)b}/F2.

8 This can be readily checked by integration by parts.

9 We implicitly assume that pieces of equipment when new are all identical. This, of course, neglects the possibility
of technological change over time. For the two particular cases we will analyze, this is an acceptable assumption
10 This can be checked by differentiation: FU´(u|a, b~ )=fU(u|a, b~ ), where a≡( x - x*)/σ and b~ ≡b/σ.

11 One referee made me see that I should make this point clear.
12 It is unlikely that tenants replace equipment of the housing unit they rent.

13 We do not attempt to model the behavior of potential first-time buyers of electric heaters and central air
conditioners. Hence, marginal changes in household’s characteristics are meant to quantify changes in the likelihood
of replacement only. See Poirier and Ruud (1981)’s article on the appropriateness of endogenous switching.
14 This corresponds to C, the cost of installing a new piece of equipment.

15 Those people who received aid in terms of food stamps, unemployment benefits or income from AFDC (Aid to
Families with Dependent Children) during the 12 months prior to the conduction of the survey were classified as
having a poor credit rating.

16 We do not have information on equipment purchase prices, which would allow us to control for quality
heterogeneity.
17 Using the technique of generalized residuals (Gourieroux and Monfort, 1987), we found that the residuals of the
replacement models for heating and air-conditioning equipment were correlated. That means that the timing of
replacing a heating system may be correlated with that of replacing a cooling system for a given household.

18 We draw data from the cumulative distribution function of equipment lifetime to infer the age of current
equipment, using as starting values the parameter estimates from the asymptotic model. In order to infer the
equipment current age, we utilize the information on housing unit age provided by the RECS. In particular, we
simulate n equipment lifetimes for each household so that their sum is greater or equal than housing unit age. That

is, hua
n

1i
il ≥∑

=
, where li and ahu stand for the lifetime of equipment ‘i’ and housing unit age, respectively. If strict

inequality holds, then an approximation to age of current equipment is calculated as the difference between ahu and

∑
=

1-n

1i
il , the sum of the n-1 simulated lifetimes. New parameters estimates can be found by minimizing the difference

between the number of appliances observed in each age category and that predicted by the simulations.


