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Abstract 
 
 This paper presents two applications of Extreme Value Theory (EVT) to financial markets: 
computation of value at risk and assets returns dependence under extreme events (i.e. tail dependence). We 
use a sample comprised of the United States, Europe, Asia, and Latin America. Our main findings are the 
following. First, on average, EVT gives the most accurate estimates of value at risk. Second, tail dependence 
decreases when filtering out heteroscedasticity and serial correlation by multivariate GARCH models. Both 
findings are in agreement with previous research in this area for other financial markets.  
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I Introduction 
 
 Extreme value theory (EVT) has emerged as one of the most important statistical 
disciplines for the applied sciences over the last fifty years, and for other fields in recent 
years (e.g., finance). The distinguishing feature of EVT is to quantify the stochastic 
behavior of a process at unusually large or small levels. Specifically, EVT usually requires 
estimation of the probability of events that are more extreme than any other that has been 
previously observed. 
 
 This article tackles two key issues in risk management: computation of value at risk 
and stock market dependence using the new approach of EVT. In particular, value at risk 
(VaR) is a popular measure of market risk (see, for example, Jorion, 2001), whose origins 
date back to the late 1980’s at J.P. Morgan. VaR answers the question about how much we 
can lose with a given probability over a certain time horizon. It became a key measure of 
market risk since the Basle Committee stated that banks should be able to cover losses on 
their trading portfolios over a ten-day horizon, 99 percent of the time. Financial firms 
usually use VaR for internal risk control considering a one-day horizon and a 95-percent 
confidence level.  
 
 More formally, VaR measures the quantile of the projected distribution of gains and 
losses over a given time horizon. If α is the selected confidence level, VaR is the 1−α 
lower-tail level. In practical applications, computation of VaR involves choosing α, the 
time horizon, the frequency of the data, the cumulative distribution function of the price 
change of a financial position over the time horizon under consideration, and the amount of 
the financial position. 
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 The assumption made about the distribution function of the price change is key to 
VaR calculation. Some available methods are Riskmetrics, the GARCH approach, quantile 
estimation, and extreme value theory (see, for example, Tsay, 2001, chapter 7). Riskmetrics 
assumes that the continuously compounded daily return of a portfolio follows a conditional 
normal distribution. The GARCH approach resorts to conditional heterocedastic models. If 
innovations are assumed normal, quantiles to compute VaR can be easily obtained from the 
standard normal distribution. Alternatively, if innovations are assumed Student-t, 
standardized quantiles are used. Quantile estimation in turn provides a non-parametric 
estimate of VaR. It does not make any assumption about the distribution of the portfolio 
return. There are two types of quantile methods: empirical and quantile regression. Finally, 
extreme value theory (EVT) has a goal to quantify the probabilistic behavior of unusually 
large losses, and it has arisen as a new methodology to analyze the tail behavior of stock 
returns (see, for example, McNeil and Frey, 2000; Zivot and Wang, 2003, chapter 5).  
 
 Traditional parametric and non-parametric methods work well in areas of the 
empirical distribution where there are many observations, but they provide with a poor fit 
to the extreme tails of the distribution. This is evidently a disadvantage because 
management of extreme risk calls for estimation of quantiles and tail probabilities that 
usually are not directly observable from the data. EVT focuses on modeling the tail 
behavior of a loss distribution using only extreme values rather than the whole data set. In 
addition, EVT offers a parametric estimate of tail distribution. This feature allows for some 
extrapolation beyond the range of the data. In this article, we estimate assets volatility with 
GARCH-type models and compute tails distributions of GARCH innovations by EVT. This 
makes it possible to compute conditional quantiles (i.e., VaR), and compare the EVT 
approach to other alternatives, such as conditional normal, t, and non-parametric quantiles. 
 
 In second term, we focus on financial markets dependence. Estimating dependence 
of asset returns is one of the most important subjects of portfolio theory and of many other 
fields of finance, such as hedging, derivatives valuation and credit analysis. One of the 
simplest ways to measure association is by the Pearson correlation coefficient. However, 
this is only appropriate for detecting linear association between two random variables. And, 
given that it is constructed from deviations from the mean, the weight given to extreme 
observations is the same as that given to all the other observations. Therefore, the Pearson 
correlation coefficient is not an accurate measure of dependence if extreme observations 
present different patterns of dependence from the rest of the sample.  
 
 An alternative approach can be found in the extreme value theory, which comes 
from the statistics field. EVT has been applied to financial issues only in the past years, 
although it has been broadly utilized in other fields, such as insurance claims, 
telecommunications and engineering. To date, the applications of EVT to finance have been 
primarily univariate (e.g., momentum of financial returns and characterization of the tails of 
stock returns), while multivariate applications are relatively recent (e.g., computation of the 
value at risk of a portfolio, co-crashes of stock and bond markets). 
 
 An important issue that arises when studying cross section dependence under EVT 
is that there are two types of extreme value dependence: asymptotic dependence and 
asymptotic independence. Both forms of dependence allow dependence between relatively 
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large values of each variable, but the largest values from each variable can take place 
jointly only when the variables are asymptotically dependent (see, for example, Coles, 
Heffernan and Twan, 1999; Poon, Rockinger, and Tawn, 2003). The literature has generally 
focused on the latter. 
 
 However, if the series are asymptotically independent, such an approach will 
overestimate extremal dependence and, therefore, risk. The degree of overestimation will 
depend upon the degree of asymptotic independence. Recent research by Poon, Rockinger, 
and Tawn (2003) controls for asset returns heterocedasticity before testing for tail 
dependence. Their estimation results show that tail dependence decreases when filtering out 
heteroscedasticity by univariate and bivariate GARCH models. In addition, Poon et al. find 
that extreme value dependence is usually stronger in bear markets (left tails) than in bull 
markets (right tails).  
 
 First, we analyze different ways to compute value at risk for stock markets across 
the United States, Latin America, Europe, and Asia. We conclude that quantile estimates 
based on Extreme Value Theory are the best predictors. Secondly, we test the degree of 
extremal dependence across different financial markets. In particular, we present an 
application for the United States and conclude that bond markets do not exhibit extremal 
dependence of stock markets, and much of the extremal dependence across stock markets 
disappear when controlling for both serial correlation and heteroscedasticity. Some of these 
issues have been tackled in previous research, but our analysis presents some further 
insights. The topics covered in this article are relevant to portfolio management of 
commercial banks, insurance and re-insurance companies, and investment banks around the 
world, which have to asses their portfolios risk periodically. 
 
 This paper is organized as follows. Section II presents a brief overview of extreme 
value theory. Section III deals with computing value at risk under alternative methods for a 
sample of different countries around the world. Section IV focuses on the topic of extremal 
dependence, and presents an application for the United States. Finally, Section V 
summarizes our main findings.  
 
II Theoretical Background on Extreme Value Theory 
 
 Let X1, X2,.., Xn be identically distributed and independent (iid) random variables 
representing risks or losses with unknown cumulative distribution function (cdf), 
F(x)=Pr(Xi≤x). Examples of random risks are negative returns on financial assets or 
portfolios, operational losses, catastrophic insurance claims, credit losses, natural disasters, 
service life of items exposed to corrosion, traffic prediction in telecommunications, etcetera 
(see Coles, 2001; Reiss and Thomas, 2001; McNeil and Frey 2000).  
 
 As a convention, a loss is treated as a positive number and extreme events take 
place when losses come from the right tale of the loss distribution F. Let 
Mn=max(X1,X2,…, Xn) be the worst-case loss in a sample of n losses. For a sample of iid 
observations, the cdf of Mn is given by 
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 An asymptotic approximation to Fn (x) is based on the Fisher-Tippet (1928) 
theorem. Given that for x<x+, where x+ is the upper end-point of F,2 Fn(x)→0 as n→∞, the 
asymptotic approximation of Fn is based on the standardized maximum value 
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where σn and µn are a scale and location parameters, respectively. The Fisher-Tippet 
theorem states if Zn converges to some non-degenerate distribution function, this must be a 
generalized extreme value (GEV): 
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 The parameter ζ is a shape parameter and determines the tail behavior of Gζ(z). If Zn 
converges to Gζ(z), then Zn is said to be in the domain of attraction of Gζ(z). If the tail of F 
declines exponentially, then Gζ(z) is of the Gumbel type and ζ=0. In this case, distributions 
in the domain of attraction of Gζ(z) are of the thin-tailed type (e.g., normal, log-normal, 
exponential, and gamma). If the tail of F declines by a power function, then Gζ(z) is of the 
Fréchet type and ζ>0. Distributions in the domain of attraction of Gζ(z) are called fat-tailed 
distributions (e.g., Pareto, Cauchy, Student-t, and mixtures models). Finally, if the tail of F 
is finite then Gζ(z)is of the Weibull type and ζ<0. Distributions in the domain of attraction 
of Gζ(z)are distributions with bounded support (e.g., uniform and beta).  
 
 In practice, modeling all block maxima is wasteful if other data on extreme values 
are available. Therefore, a more efficient approach is to model the behavior of extreme 
values above a high threshold. This method receives the name of peaks over threshold 
(POT). An additional advantage of POT is that provides with Value-at-Risk (VaR) 
estimates that are easy to compute.  
 
 Let us define the excess distribution above the threshold u as the conditional 
probability 
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 For those distributions F that satisfy the Fisher-Tippet theorem, it can be shown that 
for large enough u there exists a positive function β(u), such that (4) is well approximated 
by the generalized Pareto distribution (GPD) 
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where β(u)>0, and y≥0 when ζ≥0, and 0≤y≤−β(u)/ζ when ζ<0 (see, for example, Coles, 
2001).  
 
 For a given value of u, the parameters ζ, µ, and σ of the GEV distribution determine 
the parameters ζ and β(u). In particular, the shape parameter ζ is independent of u, and it is 
the same for both the GEV and GDP distributions. If ζ>0, F is in the Fréchet family and 
Hζ,β(u) is a Pareto distribution; if ζ=0, F is in the Gumbell family and Hζ,β(u) is an 
exponential distribution; and, if ζ<0, F is in the Weibull family and Hζ,β(u) is a Pareto type 
II distribution. In most applications of risk management, the data comes from a heavy-
tailed distribution, so that ζ>0.  
 
 In order to estimate the tails of the loss distribution, we resort to a theorem which 
establishes that, for a sufficiently high threshold u, Fu(y)≈Hζ,β(u)(y) (see Embrechts, 
Klüpperberg and Mikosch, 1997, chapter 3). By setting x=u+y, an approximation of F(x), 
for x>u, can be obtained from equation (4) 
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 The function F(u) can be estimated non-parametrically using the empirical cdf 
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where k represents the number of exceedences over the threshold u. After substituting (5) 
and (7) into (6), we get the following estimate for F(x) 
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where ζ̂  and β̂  are estimates of ζ and β, respectively, which can be obtained by the 
method of maximum likelihood.  
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III Application of EVT to Value at Risk 
 
 Value at Risk is usually computed for confidence levels between 95 and 99.5 
percent. That is, for 0.95≤q<1, VaRq is the qth quantile of the distribution F 
 
 VaRq=F−1(q)         (9) 
 
where F−1 is the inverse function of F. For q>F(u), an estimate of (9) can be obtained from 
(8) by solving for x 
 

 











−





 −

ζ
β+=

ζ−∧
1

n/k
q1

ˆ
ˆ

uVaR
ˆ

q       (10) 

 
 In our estimation process, we follow McNeil and Frey (2000)’s two-step estimation 
procedure called conditional EVT 
 
Step 1: Fit a GARCH-type model to the return data by quasi-maximum likelihood. That is, 
maximize the log-likelihood function of the sample assuming normal innovations.  
 
Step 2: Consider the standardized residuals computed in Step 1 to be realizations of a white 
noise process, and estimate the tails of the innovations using extreme value theory. Next, 
compute the quantiles of the innovations for q≥0.95.  
 
 We assume that the dynamics of log-negative returns can be represented by 
 
 rt = α0 +α1rt−1 +σtZt        (11) 
 
where α0 and α1 are parameters, rt−1 is the lagged return, and Zt are iid innovations with 
zero mean and unit variance, and marginal distribution FZ(z). For simplicity, we assume 
that the conditional variance 2

tσ  of the mean-adjusted series εt=rt−α0−α1rt−1 follows a 
GARCH(1,1) process 
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where β0>0, β1>0, and γ>0. Strictly stationarity is ensured by β1+γ<1.  
 
 Under the assumption of normally distributed innovations, the log-likelihood 
function of a sample of m iid observations is given by3 
 

                                                 
3 Even if Zt is not truly normally distributed, the maximization of (13) still provides consistent and 
asymptotically normal estimates (see, for example, Engle and Gonzalez-Rivera, 1991). However, 
Huber/White robust standard errors must be computed (Huber, 1967; White, 1982).  
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Standardized residuals can be computed after maximizing (13) with respect to the 

unknown parameters α0, α1, β0, β1, and γ 
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 The natural 1-step forecast for the conditional variance in t+1 is given by 
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where 1t10tt rˆˆrˆ −α−α−=ε .  
 
 For a one-day horizon, an estimate of the value at risk is 
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 is given by equation (10) applied to the negative standardized residuals.  

 
3.1 Dynamic Backtesting 
 
 In order to asses the accuracy of the EVT approach and alternative procedures to 
compute VaR, we backtested each method on each return series by the following steps. Let 
r1, r2, …, rm be a historical return series. The conditional quantile t

qr̂  is computed on t days 
in the set T={n, …, m−1) using an n-day window each time, where the large of n depends 
on the sample size m of each returns series. Where otherwise stated, we left the last four 
years of data for prediction, so that n=1,000 approximately.  
 
 The constant k, which defines the number of exceedences above a threshold u, was 
set so that the 90th percentile of the innovation distribution is estimated by historical 
simulation, as suggested by McNeil and Frey (2000).  
 
 On each day t ∈  T, we estimate a new GARCH(1,1) model and fit a new 
generalized Pareto distribution to losses, which are computed from the standardized 
residuals series. This procedure, as mentioned earlier, is called conditional EVT. In 
addition, we estimate the unconditional EVT quantile, which corresponds to expression 
(10) applied to the log-negative return series.  
 
 The conditional normal quantile of the standardized residuals is simply given by 
zq=Φ−1(q), where Φ(.) is the cdf of a standard normal. In turn the quantile of a Student-t 
distribution (scaled to have variance 1) is given by )q(F/)2(z 1

Wq
−υ−υ= , where W 
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follows a t-distribution with υ degrees of freedom (υ>2). On each day t, we estimate a 
GARCH(1,1) model with Student-t innovations and estimate a new υ and new quantiles.4 
The value at risk is computed according to formula (16) for both the normal and t 
conditional cases.  
 
 The quantile estimate in t t

qr̂  is compared in each case with rt+1, the log-negative 

return in t+1 for q ∈  {0.95, 0.99, 0.995}. A violation is said to take place whenever rt+1> t
qr̂ . 

We can test whether the number of violations is statistically significant. In particular, let us 
consider the following statistic based on the binomial distribution 
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where T=m−n and Y is the number of violations, so that Y/T is the actual proportion of 
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 Expression (17) is a one-tailed test that is asymptotically distributed as standard 
normal (see, for example, Larsen and Marx, 1986, chapter 5). If Y/T<p, we test the null 
hypothesis of estimating correctly the conditional quantile against the alternative that the 
method systematically underestimates it. Otherwise, we test the null against the alternative 
that the method systematically overestimates the conditional quantile.  
 
3.2 Empirical Results 
 
3.2.1 U.S. Market: Engle (2001)’s example revisited 
 
 In this section, we look at Engle (2001)’s example on computing the value at risk of 
a portfolio made up by 50 percent Nasdaq, 30 percent Dow Jones Industrial Average 
(DJIA) and 20 percent long bonds (10-year constant maturity Treasury bond). His sample 
period covers March 23, 1990 through March 23, 2000. His uses a GARCH(1,1) model to 
estimate the 1 percent value at risk of $1,000,000 invested on the above portfolio on a 
specific date (March 24, 2000). 
 

                                                 
4 If Zt is distributed as t with υ degrees of freedom, the log-likelihood function of a sample of m independent 
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(see, for instance, Hamilton, 1994, chapter 21).  
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 In our exercise we extended Engle’s sample period to January 1990-December 
2002, and used alternative approaches to compute VaR. All computations hereafter were 
carried out with the Finmetrics module of S-Plus 6.1. Figure 1, panels (a) and (b), shows 
daily returns on the four above-mentioned series along with their corresponding histograms. 
Table 1 in turns shows some statistics for the return series. All series strongly reject the 
assumption of normality, and, according to the standard deviation and the interquartile 
range, the most volatile series were the Nasdaq and the DJIA. In addition, the Nasdaq is the 
one that exhibited the lowest and highest daily return for 1990-2002.  
 

[Figure 1 and Table 1 about here] 
 
 A better characterization of the left tail of each asset and the portfolio is given in 
Figure 2. In all cases, the tail estimates from a generalized Pareto distribution (GPD) are 
fatter than those of a normal and t distributions. This translates, as discussed below, into 
underestimating potential losses when using the latter distributions to model returns 
innovations.  

[Figure 2 about here] 
 
 In order to compute the value at risk and carry out the exercises discussed below, 
we used a GARCH(1,1) model with an AR(1) term. The parameter estimates were obtained 
by the method of quasi maximum likelihood. That is, the log-likelihood function of the data 
was constructed by assuming that innovations are conditionally distributed as Gaussian. 
Huber/White robust standard errors were computed accordingly. Specification tests carried 
out after estimation failed to detect serial autocorrelation and missing ARCH effects, 
showing that the chosen functional form is adequate for the data. The details are in Table 2. 
 

[Table 2 about here] 
 
 Table 3 presents our backtesting results for each individual asset and for the 
portfolio. As a decision rule, we took a p-value less than 5 percent to be evidence against 
the null hypothesis. Panel (a) shows the population quantiles computed by assuming normal 
and t innovations, and by the methods of conditional and unconditional EVT. Out of the 12 
cases analyzed, the null hypothesis is rejected 11 times under the normal assumption, 9 
times under the t assumption, and 3 and 9 times under the conditional and unconditional 
EVT assumptions, respectively. In particular, the conditional EVT approach never rejects 
the null hypothesis for the 99-percent quantile. Panel (b) in turn shows the backtesting 
results for the quantiles obtained from the empirical distribution of the standardized 
residuals. Overall, this procedure shows a similar pattern to that obtained under the 
conditional EVT assumption: the null hypothesis is rejected only thrice and no violations of 
the null take place for the 99-percent quantile.  
 
 Finally, Panel (c) of Table 3 shows 99-percent value at risk estimates on March 24, 
2000 for the $1-million portfolio earlier described. We used five-year and ten-year 
windows for prediction, and computed the value at risk for that particular day by the four 
methods in Panels (a) and (b). As we can see, when we use a longer- time horizon window, 
risk tends to be underestimated by all methods. In addition, under the conditional normal, 
conditional t and unconditional EVT assumptions, the potential loss at the 99 percent 
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confidence level is always underestimated with respect to the EVT and empirical quantiles 
methods. For instance, under the unconditional EVT procedure, and using the five-year 
window, the 99-percent value at risk for March 24, 2000 is $26,516, which is over $14,000 
lower than that yielded by the conditional EVT and empirical quantile procedures.  
 

[Table 3 about here] 
 
 Figure 3 depicts the actual portfolio loss over 2000-2002 and the 99-percent value at 
risk predicted by the conditional and unconditional EVT procedures. (This is the case above 
where the first 10 years of data are used for estimation, and three years are left for 
prediction). The years 2000 and 2001 stand out as stress periods. The figure clearly 
illustrates the fact that the unconditional EVT estimate does not respond quickly to 
changing volatility and, therefore, it tends to be violated more often than the conditional 
EVT estimate.  

[Figure 3 about here] 
 
3.2.2 Other U.S. Stock Indices 
 
 We also studied the properties of our four VaR-estimation methods for other U.S. 
stock indices: the Standard and Poor (S&P) 500, the Wilshire 5000, and the Russell 3000. 
The Wilshire 5000 is the most comprehensive stock of all U.S. indexes, encompassing 
small-cap, mid-cap, and large-cap stocks. The index is comprised by over 7,000 stocks, and 
it is considered a better representation of total market performance than the S&P 500. The 
Russell 3000 Index is composed of 3,000 large U.S. Companies, as determined by market 
capitalization. This portfolio represents approximately 98 percent of the U.S. equity market.  
The sample periods for the S&P500, the Wilshire 5000 and the Russell 3000 are, 
respectively, January 1980-December 2002, January 1991-December 2002, and January 
1988-December 2002. All returns series are daily.  
 
 Panel (a) of Table 4 shows again that all quantile estimators do very poorly except 
for the conditional EVT approach, which fails only once. The prediction errors are 
particularly high for the Wilshire 5000 index: only in two cases the null hypothesis is not 
rejected. As Figure 4 shows, this index exhibits a particularly volatile behavior from 1997 
onwards. Panel (b) of Table 4 shows in turn that the empirical quantiles approach behaves 
quite successfully for the S&P 500 and the Russell 3000, in that the null hypothesis is never 
rejected. Again the poorest fit is obtained for the Wilshire index.  
 

[Table 4 and Figure 4 about here] 
 
3.2.3 Stock Markets outside the U.S.  
 
 In this section, we look at stock markets outside the U.S.: Latin America, Asia, and 
Europe. For each continent, we selected the most representative stock indices. Specifically, 
for Latin America we chose the BOVESPA (Brazil), the MERVAL (Argentina), the IPSA 
(Chile), and the IPC (Mexico). The BOVESPA is a total return index weighted by traded 
volume and is comprised by the most liquid stocks traded on the Sao Paulo Stock 
Exchange. Argentina’s MERVAL is the market value of a stock portfolio, selected 
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according to participation in the Buenos Aires Stock Exchange, number of transactions and 
trading value. The IPSA is composed of the 40 stocks with the highest average annual 
trading volume on the Santiago Stock Exchange, Chile. And, the Mexican Stock Exchange 
Index (IPC) is a capitalization-weighted index of the leading stocks traded on the Mexican 
Stock Exchange. The sample period of each index covers approximately from the early 
1990’s until December 2002.  
 
 For Asia, we picked the Nikkei-225 (Japan), the Hang Seng (Hong Kong), the 
Kuala Lumpur Stock Exchange Composite Index, KLSE (Malaysia), the Korean Composite 
Stock Price Index (Kospi)-200 (South Korea), and the Straits Time Index, STI (Singapore). 
The Nikkei-225 Stock Average is a price-weighted index of 225 top-rated Japanese 
companies listed in the First Section of the Tokyo Stock Exchange. The Hang Seng is a 
capitalization-weighted index of 33 companies that represent approximately 70 percent of 
the total market capitalization of the Stock Exchange of Hong Kong. The KLSE Composite 
Index is a broad-based capitalization-weighted index of 100 stocks designed to measure the 
performance of the Kuala Lumpur Stock Exchange. The KOSPI-200 is a capitalization-
weighted index of 200 Korean stocks, which make up 93 percent of the total market value 
of the Korea Stock Exchange. And, the Straits Times Index (STI) is a modified market 
capitalization-weighted index comprised of the most heavily weighted and active stocks 
traded on the Stock Exchange of Singapore. The sample period for the Nikkei-225, the 
Hang Seng, and the STI covers from the late 1980’s until December 2002, whereas the 
sample periods for the KLSE and the KOSPI-200 cover from the early 1990’s until 
December 2002. 
 
 Finally, for Europe, we selected the DAX-30 (Germany), the CAC-40 (France), the 
FTSE-250 (U.K.), and the IBEX-35 (Spain). The German Stock Index (DAX) is a total 
return index of 30 selected German blue chip stocks traded on the Frankfurt Stock 
Exchange. The CAC-40 is a narrow-based, modified capitalization-weighted index of 40 
companies listed on the Paris Stock Exchange. The FTSE (Financial Times Stock 
Exchange)-250 is a capitalization-weighted index of the 250 most highly capitalized 
companies, outside of the FTSE-100, traded on the London Stock Exchange. And, the 
IBEX 35 is the official index for the market segment of continuously traded stocks. The 
index sample is composed of the 35 most actively traded stocks among the securities 
quoted on the Joint Stock Exchange System of the four Spanish stock exchanges. Except 
for the FTSE 250, whose sample period covers form the mid-1980’s to December 2002, the 
sample period for the other three indices goes from the early 1990’s until December 2002 
or the early months of 2003.  
 
 Table 5 shows descriptive statistics for the above indices. All return series are daily. 
Both Brazil and Argentina stand out among all other countries for their high volatility, as 
measured by the standard deviation and interquartile range of their indices returns. By 
contrast, Chile and Mexico show similar volatility to that of Asian and European countries. 
The index that exhibits the lowest volatility is the U.K.’s FTSE-250 index.  
 

[Table 5 about here] 
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 All returns series strongly reject the assumption of normality because of their high 
kurtosis (which ranges between 5.3 and 73.7) and skewness which departs from zero. In 
particular, the most skewed and leptokurtic series is Hong Kong’s Hang Seng. Figure 4 
sheds more light on the evolution of each series. In general, stock markets exhibit more 
volatility from 1998 onwards. This is particularly noticeable for the KOSPI-200 return 
series.  

[Figure 4 about here] 
 
 Table 6, panels (a) through (f), shows value-at-risk estimation for our sample of 
countries. For Europe, we find a similar pattern to that of the U.S (panels (c) and (d)).: 
quantiles computed by the conditional standard normal, conditional Student-t, and 
unconditional EVT methods are far off the mark, while the conditional EVT and empirical 
quantile methods prove quite successful. (The former fails only once whereas the latter fails 
twice out of 12 cases). The Latin American and Asian return series exhibit a slightly 
different behavior. In particular, for Latin America the methods closest to the mark are 
conditional EVT, unconditional EVT, and the empirical quantiles (panels (a) and (b)). 
Unexpectedly, the unconditional EVT method outdoes the conditional EVT method in the 
99.5-percent VaR for MERVAL. This is a rare case because we would expect the 
conditional EVT method to do better than the unconditional EVT one, given that the former 
adjusts more quickly to changing volatility than the latter. For Asia (panels (e) and (f)) in 
turn, the conditional normal method has the worst performance, like in the above cases, but 
the conditional-t method do as well as the conditional-EVT method. In particular, the 
conditional-t method never fails for those returns series that are failed-tail but relatively 
symmetric, namely, the KLSE, KOSPI-200, and STI. Finally, we again encounter a case 
where the unconditional EVT method outdoes the conditional EVT method (99.9-percent 
VaR for the Nikkei-225). As a whole, the unconditional EVT and empirical quantile 
methods work best for Asia, rejecting the null hypothesis only once.  
 

[Table 6 about here] 
 
 To summarize our results in Sections 3.2.1 through 3.2.3, we conclude that, out of 
the 60 cases analyzed, the conditional-normal and conditional-t methods have the poorest 
performance, failing 34 and 22 times, respectively. They are followed by the unconditional-
EVT and empirical-quantile methods, which fail 19 and 10 times, respectively. Finally, the 
conditional-EVT method fails only 6 times. Although not infallible, the latter proves to be 
the best procedure, among the ones analyzed, to compute value at risk.  
 
IV Further Applications of Extreme Value Theory: Returns Dependence 
 
 This section benefits from work by Coles, Heffernan, and Twan (1999), and from 
recent extensions by Poon, Rockinger, and Tawn (2003). Poon et al. introduce a special 
case of threshold modeling connected with the generalized Pareto distribution for the 
Fréchet case. For this particular case, the tail of a random variable Z above a (high) 
threshold u can be approximated as 
 
 )z(Lz~)zZPr()z(F1 /1 η−<=−    for z>u   (18) 
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where L(z) is a slowly varying function of z,5 and η>0. If treated as a constant for all z>u, 
that is L(z)=c, and under the assumption of n independent observations, the maximum-
likelihood estimators for η and c are 
 

 ∑
=







=η

un

1j

)j(

u u
z

log
n
1ˆ   η= ˆ/1u u

n
nĉ ,     (19) 

 
where z(1),…, z )n( u

, are the nu observations above the threshold u. η̂  is known as the Hill 
estimator 
 

 The asymptotic variance of η̂  is given by 
u

2

n
)ˆvar(a

η
=η . The asymptotic variance 

of ĉ  can be obtained by the delta method, avar( ĉ )= 2

2/2

2
u )u(logu

n
n

η

η

.  

 
 The first step is to transform the original variables to a common marginal 
distribution. Let (X,Y) be bivariate returns with corresponding cumulative distributions 
functions FX and FY. The bivariate returns are transformed to unit Fréchet marginals (S, T) 
using the transformation 
 

 
)X(Fln

1S
X

−=   
)Y(Fln

1T
Y

−=  S>0, T>0.  (20) 

 
 Under this transformation, Pr(S>s)=Pr(T>s)∼ s−1.6 As both S and T are on a common 
scale, the events {S>s} and {T>s}, for large values of s, correspond to equally extreme 
events for each one. Given that Pr(S>s)→0 as s→∞, it becomes natural to consider the 
conditional probability Pr(T>s|S>s) for large s. If (S,T) are perfectly dependent, 
Pr(T>s|S>s)=1. By contrast, if (S,T) are exactly independent, Pr(T>s|S>s)=Pr(T>s), which 
tends to zero as s→∞. Let us define 
 
 )sSsTPr(lim

s
>>=χ

∞→
   0≤χ≤1 .   (21) 

 
 Variables are called asymptotically dependent if χ>0, and asymptotically 
independent if χ=0. In other words, χ measures the degree of dependence that lingers in the 
limit. Nonetheless, random variables, which are asymptotically independent, may show 
different degrees of dependence for finite levels of s. Based on this fact, Coles, Heffernan 
and Twan (1999) proposed the following measure of dependence 
 

                                                 
5 A function on L on (0, ∞) is slowly varying if limx→∞ L(tz)/L(z)=1 for t>0.  
6Pr(S>s)=Pr(−1/lnFX(X)>s)=Pr(lnFX(X)>−1/s)=Pr(Fx(X)>exp(−1/s)), given that the log function is monotonic. 
Furthermore, F(X)∼ U(0,1). Therefore, Prob(S>s)=1−exp(−1/s)=L(s) s−1∼  s−1, where L(s) is a slow varying 
function of s. 
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 1
))sT,sSlog(Pr(

))sSlog(Pr(2
lim
s

−
>>

>
=χ

∞→
  11 ≤χ<− .   (22) 

 
 This is a well-defined measure of asymptotic independence as it gives the rate at 
which Pr(T>s|S>s)→0. Values of χ >0, χ =0 and χ <0 are approximate measure of positive 
dependence, exact independence, and negative dependence.  
 
 The pair (χ, χ ) provide all the necessary information to characterize both the form 
and degree of extreme dependence. For asymptotically dependent variables, χ =1 and the 
degree of dependence is measured by χ>0. For asymptotic independent variables, χ=0 and 
the degree of dependence is measured by χ . Therefore, one should first test if χ =1 before 
reaching any conclusion about the dependence based on χ.  
 
 It can be shown that 
 
 Pr(S>s, T>s)∼ L(s)s−1/ξ  as s→∞,  
 
where 0<ξ≤1 and L(s) is a slowly varying function. Given that Pr(S>s)∼ s−1, χ  boils down 
to 12 −ξ=χ . 
 
 The test of dependence is implemented by letting Z=min(S,T), and noting that 
 
 Pr(Z>z)=Pr{min(S,T)>z} 
   = Pr(S>z, T>z) 
   = L(z) z−1/ξ 

  = d z−1/ξ  for z>u,     (23) 
 
for some high threshold u. The above equation shows that ξ is the tail index of the 
univariate random variable Z. Therefore, it can be obtained by the Hill estimator, 
constrained to the interval (0, 1], and d, the scale parameter, can be computed as explained 
earlier.  
 
 Under the assumption of independent observations on Z, we have 
 

 1
u

z
log

n
2ˆ

un

1j

)j(

u

−











=χ ∑

=

  
u

2

n
)1ˆ()ˆ(Var +χ=χ ,   (24) 

 
where χ̂  is asymptotically normal.  
 

 The decision rule is: if χ̂  is significantly less than 1, that is, if 1)ˆ(Var96.1ˆ <χ+χ , 
we conclude that the variables are asymptotically independent and take χ=0. In case there is 
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no enough evidence to reject the null hypothesis 1=χ , we estimate χ under the assumption 

that 1=ξ=χ . In such case, 
n

unˆ u=χ  and 3
uu

n
)nn(un)ˆ(Var −=χ .  

 
 The application of this section deals with tail dependence of the DJIA, and the 10-
year T-Bill and the Nasdaq returns data, which were analyzed in Section 3.2.1. To start 
with, we draw scatter plots of the DJIA and the T-Bill and the DJIA and the Nasdaq. The 
results are depicted in Figure 7. Simple inspection of the plots shows that the correlation 
between the DJIA and the T-Bill is very low (equal to 0.04), and that this will translate into 
asymptotic independence of both negative and positive extremes. By contrast, the DJIA and 
the Nasdaq exhibits a much higher correlation coefficient (equal to 0.68), and the 
dependence of their returns is persistent for both negative and positive extremes. However, 
as discussed below, tail dependence is quite sensitive to filtering out the data for both 
heterocedasticity and serial correlation. 

 
[Figure 7 about here] 

 
 In order to control for both heteroscedasticity and serial correlation, we use a 
diagonal VEC model or DVEC (1, 1) 
 
 tltt εβrcr ++= −   t=2, …, T,     (25) 
 
where rt is a k x 1 vector of asset returns, c is a k x 1 vector of constant terms, rt−1 is a k x 1 
vector containing the first lag of rt, ββββ is a k x 1 vector, and εεεεt is a k x 1 white noise vector 
with zero mean. The matrix variance-covariance of εεεεt is given in this case by 
 
 1t1t1t10t )'( −−− ⊗+⊗+= ΣBεεAAΣ  t=2, …, T,   (26) 
 
where A0, A1, B, ΣΣΣΣt and εεεεt−1εεεεt−1′ are k x k matrices, for t=2, …,T, and ⊗  denotes the 
Hadamar product (e.g., Bollerslev, Engle, and Wooldridge, 1988; Zivot and Wang, 2003, 
chapter 13). In order to obtain the elements of ΣΣΣΣt,, only the lower part of the system in (26) 
is considered. For our application, we have rt=(rDJIA, rT-Bill, rNasdaq)t

′. The choice of model 
(25)-(26) is based on its good fit to the data.  
 
 Let us now consider independent observations of negative returns (Xt,Yt), t=2,…,T, 
with unknown distribution F. It can be shown that the random variables ut= )X(F tX  and 
vt= )Y(F tY  are both distributed as Uniform, where FX and FY are the marginal distribution 
functions. An informal procedure to detect extremal dependence (in the left tail, in this 
case) consists of examining the large values of ut and vt (see, for example, Coles, 
Heffernan, and Tawn, 1999). Since FX and FY are unknown, estimates are obtained from 
the empirical distribution functions.  
 

Panel (a) of Figure 7 shows left-tail dependence for the unfiltered data of the 
Nasdaq and the DJIA returns and the T-Bill and the DJIA returns. Evidence of rather strong 
dependence of the Nasdaq and the DJIA in bear markets is shown, while little evidence is 
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found for the T-Bill and the DJIA. Panel (b) in turn shows how extremal dependence 
decreases when filtering out the data for both heteroscedasticity and serial correlation. 
Specifically, the corresponding pairs of negative standardized residuals obtained from the 
DVEC(1,1) model are shown. The extremal dependence of the Nasdaq and the DJIA is 
substantially reduced, while the T-Bill and the DJIA show no pattern of extremal 
dependence as before.  
 

[Figure 7 about here] 
 
 The next step consists of testing tail dependence formally by using the machinery 
described earlier. In order to do so, one has to choose an appropriate threshold u to compute 
the Hill estimator. The simplest approach is to plot it against u and find a proper u, such 
that the Hill estimator appears to be stable (see, for instance, Tsay, 2001, chapter 7). 
However, in some cases such stability is not easy to visualize. That is why formal 
approaches to find u have been designed.  
 
 In a recent article, Matthys and Beirlant (2000) overview several methods of 
adaptive threshold selection that have been developed in recent years. The authors 
distinguish two approaches to estimating the optimal threshold. One consists of 
constructing an estimator for the asymptotic mean-squared error (AMSE) of the Hill 
estimator, and choosing the threshold that minimizes it. This approach includes a bootstrap 
method (the one used by Poon et al.) and an exponential regression model. The latter is 
studied in detailed in Beirlant, Diercks, Goegebeur, and Matthys (1999). The second 
approach derives estimators directly for u, based on the representation of the AMSE of the 
Hill estimator.  
 
 Given that the exponential regression approach is easy to implement, it is our choice 
to find the optimal threshold. Feuerverger and Hall (1999) and Beirlant et al (1999) derived 
an exponential regression model for the log-spacings of upper statistics 
 

 j(log(Xn−j+1,n)−log(Xn−j,n)∼ jk,n f
1k

j
b 





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









+

+γ
ρ−

  1≤j≤k  (27) 

 

where X1,n≤X2,n≤…≤Xn,n, 






+
+=

1k
1nbb k,n , 1≤k≤n−1, (f1, f2, …,fk) is a vector of 

independent standard exponential random variables, and ρ≤0 is a real constant.  
 
 If we fix the threshold u at the (k+1)th largest observation, the Hill estimator is given 

by ∑
=

−+− −=
k

1j
n,knn,1jnn,k )Xlog()Xlog(

k
1

H . In turn this can be rewritten as  

 

( )))Xlog()X(log(k...))Xlog()X(log(2))Xlog()X(log(
k
1
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 = ))Xlog()X(log(j
k
1 k

1j
n,jnn,1jn∑

=
−+− − .      (28) 

 
 The Hill estimator written this way is the maximum likelihood estimator of γ in the 
reduced model 
 
 jn,jnn,1jn f~))Xlog()X(log(j γ− −+−   1≤j≤k. 
 
 Given that the Hill estimator is an average of independent exponential random 
variables, its variance can be approximated by 

 
k

~)H(Var
2

n,k
γ ,        (29) 

 
while its bias arises from neglecting the second term in the right-hand side of equation (27) 
 

 
ρ−

γ−
1
b

~)H(E k,n
k,n .        (30) 

 
 For n→∞, k→∞, and k/n→0, the Hill estimator is asymptotically normal 
 

 ),0(N
1
b

Hk 2dk,n
n,k γ→





ρ−

−γ−  

 
 From above, the AMSE of the Hill estimator is given by 
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 Therefore, the optimal threshold opt

nk  is defined as the one that minimizes (31) 
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 The algorithm for the exponential regression goes as follows 
 

• In model (26) fix ρ at ρ0=−1 and calculate least-squares estimates kγ̂  and k,nb̂  for 
each k ∈  {3,…, n}.  
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• Determine 
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 The first step of the algorithm boils down to running a linear regression of 

))Xlog()X(log(j n,jnn,1jn −+− −  on a constant term and 2)1k(
)1n(j

+
+  for each k ∈  {3,…, n}. 

 
 Figure 8 shows the Hill estimator for the tail index ξ in equation (23) for return 
pairs, evaluated at different values of the threshold u. Panel (a) depicts right- and left-tail 
dependence of the raw returns (T-Bill/DJIA and Nasdaq/DJIA), while Panel (b) depicts the 
right- and left-tail dependence of the corresponding standardized residuals. Simple 
inspections of the graphs do not shed much light on the optimal threshold to be selected in 
each case.  
 

[Figure 8 about here] 
 
 Therefore, we resorted to Beirlant et al.’s procedure to determine k*, the optimal 
threshold. The results are reported in Table 7. The extremal dependence of the T-Bill and 
the DJIA returns in the left and right tails is low, as Panel (a) shows. (Our graphical 
analysis had already suggested the low dependence in the left tail for this pair). The Nasdaq 
and the Dow Jones, by contrast, show asymptotic independence in the left tail (bear 
markets) but asymptotic dependence in the right tail (bull markets). However, such finding 
does not longer hold after filtering the data. In fact, for the filtered data, we reached the 
same conclusion as Poon et al.: tail dependence tends to be stronger in bear markets than in 
bull markets for both pairs: T-Bill/DJIA and Nasdaq/T-Bill. In addition, for all cases, 
asymptotic independence cannot be rejected (Panel (b)).  

 
[Table 7 about here] 

 
V Conclusions 
 
 Extreme value theory (EVT) has emerged as one of the most important statistical 
disciplines for the applied sciences over the last fifty years, and for other fields in recent 
years (e.g., finance). The distinguishing feature of EVT is to quantify the stochastic 
behavior of a process at unusually large or small levels. Specifically, EVT usually requires 
estimation of the probability of events that are more extreme than any other that has been 
previously observed. 
 
 This article has tackled two key issues in risk management: computation of value at 
risk (VaR) and stock market dependence using the new approach of EVT. First, We 
analyzed different ways to compute value at risk for stock markets across the United States, 
                                                 
7 Matthys and Beirlant point out that for many distributions the exponential regression method works better, 
in MSE-sense, if the nuisance parameter ρ is fixed at some value ρ0 rather than estimated.  
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Latin America, Europe, and Asia. We concluded that quantile estimates based on EVT are 
best. Secondly, we tested the degree of extremal dependence across different financial 
markets in the United States. We concluded that bond markets do not exhibit extremal 
dependence of stock markets, and much of the extremal dependence across stock markets 
disappear when controlling for both serial correlation and heteroscedasticity.  
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TABLES 
 

Table 1  Descriptive Statistics of Daily Returns for the U.S. 
 

 T-Bill DJIA Nasdaq Portfolio 
Mean 0.000 0.000 0.000 0.000 

Median 0.000 0.000 0.001 0.001 
Std. Dev. 0.006 0.010 0.016 0.011 
IQ range 0.007 0.011 0.014 0.010 
Minimum −0.036 −0.075 −0.102 −0.067 
Maximum 0.022 0.062 0.133 0.070 
Kurtosis 5.228 7.546 8.500 7.107 

Skewness −0.379 −0.251 −0.008 −0.067 
Jarque-Bera 748.9 2,829.7 4,090.9 2,284.1 

p-value 0.000 0.000 0.000 0.000 
Observations 3,246 3,246 3,246 3,246 

Sample period Jan 90-Dec 02 Jan 90-Dec 02 Jan 90-Dec 02 Jan 90-Dec 02 
 

Table 2  GARCH(1,1) model for the Portfolio Return (rt)  
 

Coefficient Value St. Error Z-test P-value 
Constant 5.57E-04 1.40E-04 3.971 0.000 

rt−1 1.22E-01 0.020 5.984 0.000 
Variance equation 

Constant 1.33E-06 7.11E-07 1.868 0.062 
ARCH(1) 0.092 0.028 3.258 0.001 

GARCH(1) 0.894 0.034 26.160 0.000 
 
 
Notes: (1) Parameter estimates are obtained by assuming that the conditional distribution of the innovations is 
gaussian. (2) Robust standard errors are computed by Huber/White’s method. (3) Specification tests for 
standardized residuals: i) Normality test (Jarque-Bera)= 596.2, p-value=0.000; ii) Ljung-Box test for 
standardized residuals (12 lags) =13.55, p-value= 0.330, iii) Ljung-Box test for squared standardized residuals 
(12 lags)=9.443, p-value=0.665, iv) ARCH effects test (12 lags)=9.19, p-value=0.686. 4) Data source: 
Bloomberg. 
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Table 3  Backtesting Results 
 

(a) Population Quantiles 
 

 95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5% 

 
cond. 

normal 
cond. 

t 
cond.. 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

cond. 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

cond. 
EVT 

unc. 
EVT 

Portfolio             
% error 7.31% 7.76% 6.46% 9.41% 2.05% 1.55% 1.20% 1.95% 1.50% 1.05% 0.55% 0.95% 

binomial test 4.74 5.66 2.99 9.05 4.73 2.48 0.91 4.28 6.35 3.49 0.32 2.86 
p-value 0.00 0.00 0.00 0.00 0.00 0.01 0.18 0.00 0.00 0.00 0.37 0.00 
Nasdaq             
% error 7.66% 7.81% 6.61% 10.27% 1.80% 1.40% 0.80% 2.50% 1.25% 0.75% 0.65% 1.25% 

binomial test 5.46 5.77 3.30 10.80 3.61 1.81 −0.89 6.75 4.76 1.59 0.96 4.76 
p-value 0.00 0.00 0.00 0.00 0.00 0.04 0.19 0.00 0.00 0.06 0.17 0.00 

Rate             
% error 4.91% 5.21% 5.11% 5.51% 2.00% 1.50% 1.20% 1.20% 1.55% 0.70% 0.65% 0.70% 

binomial test −0.19 0.43 0.22 1.04 4.50 2.26 0.91 0.91 6.67 1.27 0.96 1.27 
p-value 0.42 0.34 0.41 0.15 0.00 0.01 0.18 0.18 0.00 0.10 0.17 0.10 
DJIA             

% error 5.86% 6.31% 5.76% 8.06% 2.05% 1.55% 1.10% 1.85% 1.65% 0.95% 0.80% 1.10% 
binomial test 1.76 2.68 1.56 6.28 4.73 2.48 0.46 3.83 7.30 2.86 1.91 3.81 

p-value 0.04 0.00 0.06 0.00 0.00 0.01 0.68 0.00 0.00 0.00 0.03 0.00 
3 3 2 3 4 4 0 3 4 2 1 3 Rejection null 

by quantile             
 

(b) Empirical Quantiles 
 

 95% 99% 99.5% 
Portfolio    
% error 6.36% 1.05% 0.60% 

binomial test 2.79 0.23 0.64 
p-value 0.00 0.41 0.26 
Nasdaq    
% error 6.51% 0.95% 0.60% 

binomial test 3.10 −0.22 0.64 
p-value 0.00 0.41 0.26 
Rate    

% error 5.16% 1.15% 0.90% 
binomial test 0.32 0.68 2.54 

p-value 0.37 0.25 0.01 
DJIA    

% error 5.66% 1.35% 0.75% 
binomial test 1.35 1.58 1.59 

p-value 0.09 0.06 0.06 
Rejection of null by quantile 2 0 1 

 



 23 

 
Table 3  Continued 

 
(c) Value at risk for the portfolio on March 24, 2000 in US dollars 

 
99-percent Value at risk 

 conditional 
normal 

conditional 
t 

conditional 
EVT 

unconditional 
EVT 

empirical 

5- year window data $32,234.8 $35,626.4 $41,018.9 $26,516.0 $41,092.6 
10- year window data $27,056.8 $30,918.6 $33,078.6 $22,716.5 $34,041.1 

Actual losses 
  March, 24 $190.0   
  March, 27 $2,993.2   
  April, 14 $66,607.4   

 
Notes: (1) In Panels (a) and (b), backtesting was carried out by leaving the last five years of data for 
prediction. A p-value less than 5 percent is taken as evidence against the null hypothesis.  
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Table 4  Other U.S Indices 
 

(a) Population quantiles 
 

 95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5% 

 
cond. 

normal 
cond. 

t 
cond 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

 cond 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

 cond 
EVT 

unc. 
EVT 

S&P 500             
% error 4.92% 5.55% 5.19% 6.05% 1.86% 1.36% 1.08% 1.25% 1.29% 0.67% 0.52% 0.73% 

binomial test −0.25 1.74 0.62 3.33 5.96 2.48 0.59 1.75 7.79 1.64 0.21 2.26 
p-value 0.60 0.04 0.27 0.00 0.00 0.01 0.28 0.04 0.00 0.05 0.58 0.01 

Wilshire 5000             
% error 6.88% 7.25% 6.37% 9.01% 2.54% 1.76% 1.29% 1.81% 1.86% 1.04% 0.62% 0.88% 

binomial test 3.80 4.53 2.76 8.08 6.79 3.36 1.30 3.59 8.50 3.34 0.75 2.37 
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.23 0.01 

Russell 3000             
% error 5.56% 6.46% 5.52% 6.96% 2.16% 1.55% 1.30% 1.41% 1.62% 0.90% 0.47% 0.58% 

binomial test 1.34 3.52 1.25 4.74 6.16 2.92 1.58 2.15 8.39 3.00 −0.23 0.58 
p-value 0.09 0.00 0.10 0.00 0.00 0.00 0.06 0.02 0.00 0.00 0.41 0.28 

1 3 1 3 3 3 0 3 3 2 0 2 Total rejections 
by quantile             

 
(b) Empirical quantiles 

 
 95% 99% 99.5% 

S&P 500    
% error 5.17% 1.21% 0.67% 

binomial test 0.55 1.46 1.64 
p-value 0.29 0.07 0.05 

Wilshire 5000    
% error 6.47% 1.45% 0.78% 

binomial test 2.96 1.98 1.72 
p-value 0.00 0.02 0.04 

Russell 3000    
% error 5.52% 1.26% 0.54% 

binomial test 1.25 1.39 0.31 
p-value 0.10 0.08 0.38 

Total rejections null by quantile 1 1 1 
 

Notes: 1) The sample periods for the S&P 500, the Wilshire 5000, and the Russell 3000 are, respectively, 
January 1980-December 2002, January 1991-December 2002, and January 1988-December 2002. All returns 
series are daily. 2) The first four years of the data are left for backtesting in each case. A p-value less than 5 
percent is taken as evidence against the null hypothesis. 3) Data source: Bloomberg. 
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Table 5  Descriptive Statistics of Daily Stock Returns outside the U.S. 
 

(a) Latin America 
 

 BOVESPA IPSA MERVAL IPC 
Mean 0.004 0.001 0.001 0.001 

Median 0.003 0.000 0.000 0.000 
Std. Dev. 0.035 0.013 0.031 0.018 
IQ range 0.032 0.014 0.028 0.019 
Minimum −0.395 −0.085 −0.185 −0.143 
Maximum 0.345 0.090 0.262 0.122 
Kurtosis 24.441 7.507 11.053 7.965 

Skewness −0.129 0.212 0.892 −0.030 
p-value JB test 0.000 0.000 0.000 0.000 
Observations 2,710 3,238 3,207 2,741 

Sample period Jan 92-Dec 02 Jan 90-Dec 02 Jan 90-Dec 02 Jan 92-Dec 02 
 

 
(b) Asia 

 
 Nikkei-225 Hang Seng KLSE Comp. KOSPI-200 STI 

Mean 0.000 0.000 0.000 0.000 0.000 
Median 0.000 0.001 0.000 −0.001 0.000 

Std. Dev. 0.014 0.019 0.019 0.022 0.013 
IQ range 0.014 0.016 0.015 0.021 0.012 
Minimum −0.161 −0.405 −0.242 −0.151 −0.160 
Maximum 0.124 0.172 0.208 0.108 0.129 
Kurtosis 11.106 73.705 33.406 6.570 16.997 

Skewness −0.077 −3.333 0.412 0.050 −0.406 
p-value JB test 0.000 0.000 0.000 0.000 0.000 
Observations 4,676 3,957 2,214 3,174 3,730 

Sample period Jan 84-Dec 02 Jan 87-Dec 02 Jan 94-Dec 02 Jan 90-Dec 02 Jan 88-Dec 02 
 

(c) Europe 
 

 DAX-30 CAC-40 FTSE-250 IBEX-35 
Mean 0.000 0.000 0.000 0.000 

Median 0.001 0.000 0.001 0.001 
Std. Dev. 0.014 0.014 0.008 0.014 
IQ range 0.015 0.016 0.007 0.016 
Minimum −0.099 −0.077 −0.120 −0.073 
Maximum 0.076 0.068 0.071 0.063 
Kurtosis 6.997 5.371 30.653 5.313 

Skewness −0.278 −0.121 −1.951 −0.160 
p-value JB test 0.000 0.000 0.000 0.000 
Observations 3,009 3,260 4,286 2,760 

Sample period Jan 91-Dec 02 Mar 90-Mar 03 Jan86-Dec 02 Feb 92-Feb 03 
 

Notes: 1) JB test stands for Jarque-Bera normality test. 2) Data source: Bloomberg. 
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Table 6  Backtesting Results of Stock Markets outside the U.S. 
 

(a) Latin America’s population quantiles 
 
 95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5% 

 
cond. 

normal 
cond. 

t 
 cond  
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

 cond.  
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

 cond.  
EVT 

unc. 
EVT 

BOVESPA             
% error 5.74% 6.03% 5.68% 3.59% 1.80% 1.10% 1.10% 0.75% 1.04% 0.75% 0.64% 0.41% 

binomial test 1.40 1.95 1.29 −2.68 3.32 0.42 0.42 −1.03 3.20 1.49 0.81 −0.56 
p-value 0.08 0.03 0.10 0.00 0.00 0.34 0.34 0.15 0.00 0.07 0.21 0.29 
IPSA             

% error 4.86% 5.04% 5.93% 4.90% 1.25% 0.98% 1.03% 1.03% 0.98% 0.67% 0.62% 0.58% 
binomial test −0.31 0.08 2.02 −0.21 1.18 −0.09 0.12 0.12 3.23 1.13 0.83 0.53 

p-value 0.38 0.47 0.02 0.42 0.12 0.46 0.45 0.45 0.00 0.13 0.20 0.30 
MERVAL             

% error 6.32% 6.81% 5.78% 4.65% 2.53% 1.90% 1.31% 0.81% 1.99% 1.04% 0.86% 0.41% 
binomial test 2.85 3.92 1.68 -0.76 7.22 4.24 1.46 −0.89 9.91 3.59 2.39 −0.63 

p-value 0.00 0.00 0.05 0.22 0.00 0.00 0.07 0.19 0.00 0.00 0.01 0.27 
IPC             

% error 4.92% 4.86% 5.60% 5.03% 1.43% 1.03% 1.03% 0.80% 1.03% 0.69% 0.57% 0.40% 
binomial test −0.16 −0.27 1.16 0.06 1.80 0.12 0.12 −0.84 3.14 1.10 0.43 −0.59 

p-value 0.44 0.39 0.12 0.48 0.04 0.45 0.45 0.20 0.00 0.13 0.34 0.28 
1 2 2 1 3 1 0 0 4 1 1 0 Total rejections 

null by quantile             
 

(b) Latin America’s empirical quantiles 
 

 95% 99% 99.5% 
BOVESPA    

% error 5.56% 1.16% 0.70% 
binomial test 1.07 0.66 1.15 

p-value 0.14 0.25 0.13 
IPSA    

% error 5.93% 1.03% 0.62% 
binomial test 2.02 0.12 0.83 

p-value 0.02 0.55 0.80 
MERVAL    

% error 6.18% 1.13% 0.68% 
binomial test 2.55 0.61 1.18 

p-value 0.01 0.27 0.12 
IPC    

% error 5.43% 1.09% 0.74% 
binomial test 0.83 0.36 1.44 

p-value 0.20 0.36 0.07 
violations 0 0 0 

Total rejections null by quantile 2 0 0 
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(c) Europe’s population quantiles 
 

 95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5% 

 
cond. 

normal 
cond. 

t 
cond. 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

cond. 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

cond. 
EVT 

unc. 
EVT 

DAX-30             
% error 6.38% 6.83% 5.93% 7.93% 1.65% 1.15% 0.90% 2.09% 1.00% 0.75% 0.50% 1.15% 

binomial test 2.84 3.76 1.92 6.01 2.90 0.66 −0.46 4.92 3.16 1.57 −0.01 4.11 
p-value 0.00 0.00 0.03 0.00 0.00 0.25 0.32 0.00 0.00 0.06 0.50 0.00 

CAC-40             
% error 5.75% 5.97% 5.35% 6.41% 1.72% 1.37% 0.93% 1.81% 0.93% 0.66% 0.62% 0.97% 

binomial test 1.63 2.11 0.76 3.08 3.46 1.77 −0.34 3.88 2.89 1.10 0.80 3.19 
p-value 0.05 0.02 0.22 0.00 0.00 0.04 0.37 0.00 0.00 0.14 0.21 0.00 

IBEX-35             
% error 6.39% 6.74% 6.05% 7.48% 1.94% 1.54% 1.26% 1.60% 1.26% 0.86% 0.57% 0.91% 

binomial test 2.89 1.10 0.80 3.19 3.96 2.28 1.08 2.52 4.48 2.11 0.42 2.45 
p-value 0.00 0.14 0.21 0.00 0.00 0.01 0.14 0.01 0.00 0.02 0.34 0.01 

FTSE-250             
% error 5.59% 6.38% 5.49% 5.43% 2.05% 1.53% 1.10% 1.19% 1.53% 0.85% 0.55% 0.61% 

binomial test 1.54 3.62 1.30 1.14 6.01 3.03 0.57 1.10 8.33 2.88 0.40 0.90 
p-value 0.06 0.00 0.10 0.13 0.00 0.00 0.28 0.14 0.00 0.00 0.34 0.18 

2 3 1 3 4 3 0 3 4 2 0 3 Total rejection 
null by quantile             

 
 (d) Europe’s empirical quantiles 

 
 95% 99% 99.5% 

DAX-30    
% error 5.78% 1.00% 0.50% 

binomial test 1.61 −0.01 −0.01 
p-value 0.05 0.49 0.50 

CAC-40    
% error 5.26% 0.97% 0.57% 

binomial test 0.57 −0.13 0.50 
p-value 0.28 0.45 0.31 

IBEX-35    
% error 5.82% 1.66% 0.80% 

binomial test 0.50 2.76 1.77 
p-value 0.31 0.00 0.04 

FTSE-250    
% error 5.49% 1.10% 0.49% 

binomial test 1.30 0.57 −0.09 
p-value 0.10 0.28 0.46 

Total rejections null by quantile 0 1 1 
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(e) Asia’s population quantiles 
 

 95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5% 

 
cond. 

normal 
cond. 

t 
cond. 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

cond. 
EVT 

unc. 
EVT 

cond. 
normal 

cond. 
t 

cond. 
EVT 

unc. 
EVT 

Nikkei-225             
% error 5.27% 6.19% 5.41% 5.84% 1.57% 1.08% 0.78% 0.97% 0.89% 0.38% 0.27% 0.54% 

binomial test 0.76 3.33 1.14 2.35 3.47 0.50 −1.32 −0.16 3.38 −1.05 −1.98 0.35 
p-value 0.22 0.00 0.13 0.01 0.00 0.31 0.09 0.44 0.00 0.15 0.02 0.36 

Hang Seng             
% error 5.46% 5.89% 5.96% 5.59% 1.89% 1.25% 0.98% 1.01% 1.28% 0.71% 0.44% 0.61% 

binomial test 1.14 2.24 2.40 1.48 4.85 1.35 −0.13 0.06 6.02 1.60 −0.48 0.82 
p-value 0.13 0.01 0.01 0.07 0.00 0.09 0.45 0.52 0.00 0.05 0.32 0.21 

KLSE Comp.             
% error 3.75% 4.40% 4.08% 4.81% 1.31% 0.65% 0.65% 0.73% 0.90% 0.41% 0.49% 0.41% 

binomial test −2.00 −0.96 −1.48 −0.30 1.07 −1.22 −1.22 −0.94 1.97 −0.46 −0.05 −0.46 
p-value 0.02 0.17 0.07 0.38 0.14 0.11 0.11 0.17 0.02 0.32 0.48 0.32 

KOSPI-200             
% error 5.29% 5.65% 6.15% 6.93% 1.60% 1.23% 1.23% 2.05% 1.05% 0.59% 0.68% 0.87% 

binomial test 0.62 1.40 2.48 4.14 2.80 1.09 1.09 4.95 3.64 0.61 1.22 2.43 
p-value 0.27 0.08 0.01 0.00 0.00 0.14 0.14 0.00 0.00 0.27 0.11 0.01 

STI             
% error 4.26% 5.27% 5.60% 5.57% 1.38% 1.02% 1.05% 0.95% 0.95% 0.51% 0.47% 0.58% 

binomial test −1.79 0.66 1.45 1.36 2.01 0.10 0.29 −0.29 3.31 0.07 −0.20 0.61 
p-value 0.04 0.25 0.07 0.09 0.02 0.46 0.39 0.39 0.00 0.47 0.42 0.27 

Total rejections 2 2 1 1 3 0 0 0 4 0 1 0 
null by quantile             
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(f) Asia’s empirical quantiles 
 

 95% 99% 99.5% 
Nikkei-225    

% error 5.19% 1.00% 0.41% 
binomial test 0.54 0.00 −-0.81 

p-value 0.30 0.50 0.21 
Hang Seng    

% error 5.83% 1.28% 0.61% 
binomial test 2.07 1.53 0.82 

p-value 0.02 0.06 0.21 
KLSE Composite    

% error 4.08% 0.90% 0.49% 
binomial test −1.48 −0.36 −0.05 

p-value 0.07 0.36 0.48 
KOSPI-200    

% error 6.20% 1.37% 0.77% 
binomial test 2.58 1.73 1.77 

p-value 0.00 0.04 0.04 
STI    

% error 5.67% 1.20% 0.69% 
binomial test 1.62 1.06 1.42 

p-value 0.05 0.15 0.08 
violations 0 0 0 

Total rejections null by quantile 1 0 0 
 
Notes: In Panels (a) through (f), the first four years of the data are left for backtesting in each case. A p-value 
less than 5 percent is taken as evidence against the null hypothesis 
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Table 7  Tail Dependence for Daily Returns 
 

(a) Raw Data 
 

 TBill/DJIA Nasdaq/DJIA TBill/DJIA Nasdaq/DJIA  Nasdaq/DJIA 
 Left tail Right tail  Right tail 

k* 353 204 398 478   
χ  0.200 0.522 0.249 0.868 χ  0.520 

s.e. 0.064 0.107 0.062 0.085 s.e 0.219 
t test −12.525 −4.486 −11.997 −0.539   

p value 0.000 0.000 0.000 0.062   
 

(b) Filtered data 
 

Left tail  
 

 TBill/DJIA Nasdaq/DJIA TBill/DJIA Nasdaq/DJIA 
 Left tail Right tail 

k* 390 387 193 419 
χ  0.184 0.361 0.132 0.184 

s.e. 0.059 0.069 0.081 0.058 
t test −13.616 −9.237 −10.657 −14.115 

p value 0.000 0.000 0.000 0.000 
 

Notes: The sample period is 1990-2002. χ  and χ  are computed based on tail index estimation of Fréchet 
transformed margins of daily co-exceedances of return pairs, Z=min(S,T). In those cases in which asymptotic 
dependence cannot be rejected ( 1=χ ), χ  is computed under the assumption that 1=χ .  
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FIGURES 
 

Figure 1 Engle’s portfolio 
 

(a) Return series 
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(b) Histograms 
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Figure 2 Behavior of Losses 
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Figure 3 99% Value at Risk and Portfolio Losses: 2000-2002 
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Note: The last three years of data are left for prediction.  
 

Figure 4 Evolution of the Wilshire 5000 (1991-2002) and Russell 3000 (1988-2002) Returns 
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Figure 5 Evolutions of Stock Indices Returns outside the U.S. 
 

(a) Latin America 
 

BOVESPA

1992 1994 1996 1998 2000 2002

-0
.3

-0
.1

0.
1

0.
3

IPSA

1990 1992 1994 1996 1998 2000 2002

-0
.0

8
0.

00
0.

08

MERVAL

1990 1992 1994 1996 1998 2000 2002

-0
.1

5
0.

05
0.

25

IPC

1992 1994 1996 1998 2000 2002

-0
.1

0
0.

00
0.

10

 
 

(b) Europe 

DAX-30

1991 1993 1995 1997 1999 2001 2003

-0
.0

8
0.

00
0.

06

CAC-40

1990 1992 1994 1996 1998 2000 2002

-0
.0

6
0.

02
0.

06

FTSE-250

1986 1990 1994 1998 2002

-0
.1

0
-0

.0
2

0.
06

IBEX-35

1992 1994 1996 1998 2000 2002

-0
.0

6
-0

.0
2

0.
02

0.
06

 
 



 35 

Figure 5 Continued 
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Figure 6  Scatter Plots of Returns: DJIA, T-Bill and Nasdaq  
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Figure 7  Tail dependence 
 

(a) Negative returns 
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(c) Negative standardized residuals 
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Figure 8  Hill Estimator for Tail Dependence 
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(b) Standardized residuals 
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Notes: The dotted lines are 95-percent confidence bands.  


