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Abstract

This paper presents two applications of Extreme Vaue Theory (EVT) to financial markets:
computation of value at risk and assets returns dependence under extreme events (i.e. tail dependence). We
use a sample comprised of the United States, Europe, Asia, and Latin America. Our main findings are the
following. First, on average, EVT gives the most accurate estimates of value at risk. Second, tail dependence
decreases when filtering out heteroscedasticity and serial correlation by multivariate GARCH models. Both
findings are in agreement with previous research in this area for other financial markets.
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I Introduction

Extreme value theory (EVT) has emerged as one of the most important statistical
disciplines for the applied sciences over the last fifty years, and for other fields in recent
years (e.g., finance). The distinguishing feature of EVT is to quantify the stochastic
behavior of a process at unusually large or small levels. Specifically, EVT usually requires
estimation of the probability of events that are more extreme than any other that has been
previously observed.

This article tackles two key issues in risk management: computation of value at risk
and stock market dependence using the new approach of EVT. In particular, value at risk
(VaR) is a popular measure of market risk (see, for example, Jorion, 2001), whose origins
date back to the late 1980’s at J.P. Morgan. VaR answers the question about how much we
can lose with a given probability over a certain time horizon. It became a key measure of
market risk since the Basle Committee stated that banks should be able to cover losses on
their trading portfolios over a ten-day horizon, 99 percent of the time. Financia firms
usually use VaR for internal risk control considering a one-day horizon and a 95-percent
confidence level.

More formally, VaR measures the quantile of the projected distribution of gains and
losses over a given time horizon. If a is the selected confidence level, VaR is the 1-a
lower-tail level. In practical applications, computation of VaR involves choosing a, the
time horizon, the frequency of the data, the cumulative distribution function of the price
change of afinancial position over the time horizon under consideration, and the amount of
the financia position.
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The assumption made about the distribution function of the price change is key to
VaR calculation. Some available methods are Riskmetrics, the GARCH approach, quantile
estimation, and extreme value theory (see, for example, Tsay, 2001, chapter 7). Riskmetrics
assumes that the continuously compounded daily return of a portfolio follows a conditional
normal distribution. The GARCH approach resorts to conditional heterocedastic models. If
innovations are assumed normal, quantiles to compute VaR can be easily obtained from the
standard normal distribution. Alternatively, if innovations are assumed Student-t,
standardized quantiles are used. Quantile estimation in turn provides a non-parametric
estimate of VaR. It does not make any assumption about the distribution of the portfolio
return. There are two types of quantile methods: empirical and quantile regression. Finally,
extreme value theory (EVT) has a goa to quantify the probabilistic behavior of unusually
large losses, and it has arisen as a new methodology to analyze the tail behavior of stock
returns (see, for example, McNell and Frey, 2000; Zivot and Wang, 2003, chapter 5).

Traditional parametric and non-parametric methods work well in areas of the
empirical distribution where there are many observations, but they provide with a poor fit
to the extreme tails of the distribution. This is evidently a disadvantage because
management of extreme risk calls for estimation of quantiles and tail probabilities that
usually are not directly observable from the data. EVT focuses on modeling the tall
behavior of aloss distribution using only extreme values rather than the whole data set. In
addition, EVT offers a parametric estimate of tail distribution. This feature allows for some
extrapolation beyond the range of the data. In this article, we estimate assets volatility with
GARCH-type models and compute tails distributions of GARCH innovationsby EVT. This
makes it possible to compute conditional quantiles (i.e,, VaR), and compare the EVT
approach to other alternatives, such as conditional normal, t, and non-parametric quantiles.

In second term, we focus on financial markets dependence. Estimating dependence
of asset returns is one of the most important subjects of portfolio theory and of many other
fields of finance, such as hedging, derivatives valuation and credit analysis. One of the
simplest ways to measure association is by the Pearson correlation coefficient. However,
thisisonly appropriate for detecting linear association between two random variables. And,
given that it is constructed from deviations from the mean, the weight given to extreme
observations is the same as that given to al the other observations. Therefore, the Pearson
correlation coefficient is not an accurate measure of dependence if extreme observations
present different patterns of dependence from the rest of the sample.

An aternative approach can be found in the extreme value theory, which comes
from the statistics field. EVT has been applied to financial issues only in the past years,
although it has been broadly utilized in other fields, such as insurance claims,
telecommunications and engineering. To date, the applications of EVT to finance have been
primarily univariate (e.g., momentum of financial returns and characterization of the tails of
stock returns), while multivariate applications are relatively recent (e.g., computation of the
value at risk of a portfolio, co-crashes of stock and bond markets).

An important issue that arises when studying cross section dependence under EVT
is that there are two types of extreme value dependence: asymptotic dependence and
asymptotic independence. Both forms of dependence allow dependence between relatively



large values of each variable, but the largest values from each variable can take place
jointly only when the variables are asymptotically dependent (see, for example, Coles,
Heffernan and Twan, 1999; Poon, Rockinger, and Tawn, 2003). The literature has generally
focused on the latter.

However, if the series are asymptotically independent, such an approach will
overestimate extremal dependence and, therefore, risk. The degree of overestimation will
depend upon the degree of asymptotic independence. Recent research by Poon, Rockinger,
and Tawn (2003) controls for asset returns heterocedasticity before testing for talil
dependence. Their estimation results show that tail dependence decreases when filtering out
heteroscedasticity by univariate and bivariate GARCH models. In addition, Poon et al. find
that extreme value dependence is usually stronger in bear markets (Ieft tails) than in bull
markets (right tails).

First, we analyze different ways to compute value at risk for stock markets across
the United States, Latin America, Europe, and Asia. We conclude that quantile estimates
based on Extreme Vaue Theory are the best predictors. Secondly, we test the degree of
extremal dependence across different financial markets. In particular, we present an
application for the United States and conclude that bond markets do not exhibit extremal
dependence of stock markets, and much of the extremal dependence across stock markets
disappear when controlling for both serial correlation and heteroscedasticity. Some of these
issues have been tackled in previous research, but our analysis presents some further
insights. The topics covered in this article are relevant to portfolio management of
commercia banks, insurance and re-insurance companies, and investment banks around the
world, which have to asses their portfolios risk periodically.

This paper is organized as follows. Section Il presents a brief overview of extreme
value theory. Section Il deals with computing value at risk under alternative methods for a
sample of different countries around the world. Section IV focuses on the topic of extremal
dependence, and presents an application for the United States. Finaly, Section V
summarizes our main findings.

11 Theoretical Background on Extreme Value Theory

Let X3, Xa,.., X, be identically distributed and independent (iid) random variables
representing risks or losses with unknown cumulative distribution function (cdf),
F(x)=Pr(X;<x). Examples of random risks are negative returns on financial assets or
portfolios, operational losses, catastrophic insurance claims, credit losses, natural disasters,
service life of items exposed to corrosion, traffic prediction in telecommunications, etcetera
(see Coles, 2001; Reiss and Thomas, 2001; McNeil and Frey 2000).

As a convention, a loss is treated as a positive number and extreme events take
place when losses come from the right tale of the loss distribution F. Let
Mp=max(X1,X2,..., Xn) be the worst-case loss in a sample of n losses. For a sample of iid
observations, the cdf of M is given by
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Pr(M, < x) =Pr(X; £ X, X, £ X,..,X,, £X) = UF(X)=Fn(X) (@)

An asymptotic approximation to F" (x) is based on the Fisher-Tippet (1928)
theorem. Given that for x<x+, where x+ is the upper end-point of F,> F'(x) » 0 asn- o, the
asymptotic approximation of F" is based on the standardized maximum value

/Z = M , o,>0 (2)

where o, and U, are a scale and location parameters, respectively. The Fisher-Tippet
theorem states if Z, converges to some non-degenerate distribution function, this must be a
generalized extreme value (GEV):

G,(2) = EbXp(_(lJ’ (7)™ E #0,1+(z>0
rexp(—exp(-z)) (=0,—0<z<o

©)

The parameter ¢ is a shape parameter and determines the tail behavior of G¢(2). If Z,
converges to G¢(z), then Z, is said to be in the domain of attraction of G¢(z). If the tail of F
declines exponentially, then G;(z) is of the Gumbel type and ¢=0. In this case, distributions
in the domain of attraction of G¢(z) are of the thin-tailed type (e.g., normal, log-normal,
exponential, and gamma). If the tail of F declines by a power function, then G¢(z) is of the
Fréchet type and {>0. Distributions in the domain of attraction of G¢(z) are called fat-tailed
distributions (e.g., Pareto, Cauchy, Student-t, and mixtures models). Finaly, if the tail of F
Is finite then G¢(z)is of the Weibull type and {<O0. Distributions in the domain of attraction
of G(z)are distributions with bounded support (e.g., uniform and beta).

In practice, modeling all block maxima is wasteful if other data on extreme values
are available. Therefore, a more efficient approach is to model the behavior of extreme
values above a high threshold. This method receives the name of peaks over threshold
(POT). An additional advantage of POT is that provides with Vaue-at-Risk (VaR)
estimates that are easy to compute.

Let us define the excess distribution above the threshold u as the conditional
probability

F(y +u) - F(u)

R =PrX-usy x> w ="

, y>0 (4)

For those distributions F that satisfy the Fisher-Tippet theorem, it can be shown that

for large enough u there exists a positive function (3(u), such that (4) is well approximated
by the generalized Pareto distribution (GPD)

% That is, the smallest value of x such that F(x)=1
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where (3(u)>0, and y=0 when (=0, and 0<y<—[(u)/{ when (<0 (see, for example, Coles,
2001).
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For agiven vaue of u, the parameters ¢, 4, and o of the GEV distribution determine
the parameters ¢ and (u). In particular, the shape parameter { isindependent of u, and it is
the same for both the GEV and GDP distributions. If (>0, F is in the Fréchet family and
Hzpw is a Pareto distribution; if (=0, F is in the Gumbell family and Hggq) is an
exponential distribution; and, if {<0, F isin the Weibull family and Hg g, is a Pareto type
Il distribution. In most applications of risk management, the data comes from a heavy-
tailed distribution, so that >0.

In order to estimate the tails of the loss distribution, we resort to a theorem which
establishes that, for a sufficiently high threshold u, Fu(y)=Hzpw(y) (see Embrechts,
KlUpperberg and Mikosch, 1997, chapter 3). By setting x=u+y, an approximation of F(x),
for x>u, can be obtained from equation (4)

F(x) = = FU)H¢ gy (y) + F(u) (6)
The function F(u) can be estimated non-parametrically using the empirical cdf

Fuy=""K
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where k represents the number of exceedences over the threshold u. After substituting (5)
and (7) into (6), we get the following estimate for F(x)

[~

ﬁ(x)=1—k§+2(xiu)ﬁZ ®
n ;

where Z and fi are estimates of ¢ and 3, respectively, which can be obtained by the
method of maximum likelihood.



III  Application of EVT to Value at Risk

Value at Risk is usually computed for confidence levels between 95 and 99.5
percent. That is, for 0.95<0<1, VaR, is the gth quantile of the distribution F

VaRe=F () (9)

where F ! is the inverse function of F. For g>F(u), an estimate of (9) can be obtained from
(8) by solving for x

0] N
VaR =u+§%ﬁ 40 (10)
‘ (Hk/mo H

In our estimation process, we follow McNeil and Frey (2000)’ s two-step estimation
procedure called conditional EVT

Step 1: Fit a GARCH-type model to the return data by quasi-maximum likelihood. That is,
maximize the log-likelihood function of the sample assuming normal innovations.

Step 2: Consider the standardized residuals computed in Step 1 to be realizations of awhite
noise process, and estimate the tails of the innovations using extreme value theory. Next,
compute the quantiles of the innovations for g=0.95.

We assume that the dynamics of log-negative returns can be represented by

It = O +01lt-1 +0iZ4 (11)

where 0o and a; are parameters, r—; is the lagged return, and Z; are iid innovations with
zero mean and unit variance, and marginal distribution Fz(z). For simplicity, we assume

that the conditional variance o> of the mean-adjusted series &=r—0o—0ir-1 follows a
GARCH(1,1) process

a7 =By +Bils +YOT, (12)
where 30>0, 31>0, and y>0. Strictly stationarity is ensured by 3;+y<1.

Under the assumption of normally distributed innovations, the log-likelihood
function of asample of miid observationsis given by®

3 Even if Z, is not truly normally distributed, the maximization of (13) still provides consistent and
asymptotically normal estimates (see, for example, Engle and Gonzalez-Rivera, 1991). However,
Huber/White robust standard errors must be computed (Huber, 1967; White, 1982).
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L(6) = —Iog(ZTt)— zlog(o) 22 (13)

Standardized residuals can be computed after maximizing (13) with respect to the
unknown parameters 0o, a1, Bo, B1, and y

(Ziomats Ziomez veer Z) = Fh m+1 G -a fi-m Teeme2 7% ~ Oyl = o _alrt—1E (14)
-m ) m P | ~ ) e ~

The natural 1-step forecast for the conditional variance in t+1 is given by
t+l BO + Bls + yG (15)
where €, =1, =0, —0,f,_;.

For aone-day horizon, an estimate of the value at risk is

HE []
VaRq =i, =0, +0,,, + 0., VaR(2), (16)
[

where VaR (Z) isgiven by equation (10) applied to the negative standardized residuals.

3.1 Dynamic Backtesting

In order to asses the accuracy of the EVT approach and alternative procedures to
compute VaR, we backtested each method on each return series by the following steps. Let

r, ra, ..., 'm be ahistorical return series. The conditional quantile F(; is computed on t days

inthe set T={n, ..., m—1) using an n-day window each time, where the large of n depends
on the sample size m of each returns series. Where otherwise stated, we left the last four
years of datafor prediction, so that n=1,000 approximately.

The constant k, which defines the number of exceedences above a threshold u, was
set so that the 90™ percentile of the innovation distribution is estimated by historical
simulation, as suggested by McNeil and Frey (2000).

On each day t 0 T, we estimate a new GARCH(1,1) model and fit a new
generalized Pareto distribution to losses, which are computed from the standardized
residuals series. This procedure, as mentioned earlier, is caled conditional EVT. In
addition, we estimate the unconditional EVT quantile, which corresponds to expression
(10) applied to the log-negative return series.

The conditional norma quantile of the standardized residuas is simply given by
zq:db‘l(q), where @(.) is the cdf of a standard normal. In turn the quantile of a Student-t

distribution (scaled to have variance 1) is given by z, =./(v-2)/v Ry (q), where W



follows a t-distribution with v degrees of freedom (v>2). On each day t, we estimate a
GARCH(1,1) model with Student-t innovations and estimate a new v and new quantiles.*
The value at risk is computed according to formula (16) for both the normal and t
conditional cases.

The quantile estimate in t ﬁ; is compared in each case with ry, the log-negative

return in t+1 for g O {0.95, 0.99, 0.995}. A violation is said to take place whenever ri.;> F(; :

We can test whether the number of violations is statistically significant. In particular, let us
consider the following statistic based on the binomial distribution

I-p
- T m N2 (17)

'PL-p)
T

where T=m-n and Y is the number of violations, so that Y/T is the actual proportion of

violations in the set T. The proportion p is the expected number of violations under the

assumption that Y = z |, ~B(T, p), where |, =1 =1, 5., ~Be(p), and I and | are
tuT

independent fort, s T, t#s.

t
lt+1>1q}

Expression (17) is a one-tailed test that is asymptotically distributed as standard
normal (see, for example, Larsen and Marx, 1986, chapter 5). If Y/T<p, we test the null
hypothesis of estimating correctly the conditional quantile against the alternative that the
method systematically underestimates it. Otherwise, we test the null against the alternative
that the method systematically overestimates the conditional quantile.

3.2  Empirical Results
3.2.1 U.S. Market: Engle (2001)’s example revisited

In this section, we look at Engle (2001)’s example on computing the value at risk of
a portfolio made up by 50 percent Nasdag, 30 percent Dow Jones Industrial Average
(DJIA) and 20 percent long bonds (10-year constant maturity Treasury bond). His sample
period covers March 23, 1990 through March 23, 2000. His uses a GARCH(1,1) model to
estimate the 1 percent value at risk of $1,000,000 invested on the above portfolio on a
specific date (March 24, 2000).

4t Z, isdistributed ast with v degrees of freedom, the log-likelihood function of a sample of m independent
observations becomes

— (U+1)/2 -1/2 _ (I’ tl) E
L@ =miog 02 S oga) = 70 S 1eg % -

(see, for instance, Hamilton, 1994, chapter 21).



In our exercise we extended Engle's sample period to January 1990-December
2002, and used alternative approaches to compute VaR. All computations hereafter were
carried out with the Finmetrics module of S-Plus 6.1. Figure 1, panels (a) and (b), shows
daily returns on the four above-mentioned series along with their corresponding histograms.
Table 1 in turns shows some statistics for the return series. All series strongly reject the
assumption of normality, and, according to the standard deviation and the interquartile
range, the most volatile series were the Nasdag and the DJIA. In addition, the Nasdaq is the
one that exhibited the lowest and highest daily return for 1990-2002.

[Figure 1 and Table 1 about here]

A better characterization of the left tail of each asset and the portfolio is given in
Figure 2. In all cases, the tail estimates from a generalized Pareto distribution (GPD) are
fatter than those of a normal and t distributions. This translates, as discussed below, into
underestimating potential losses when using the latter distributions to model returns

Innovations.
[Figure 2 about here]

In order to compute the value at risk and carry out the exercises discussed below,
we used a GARCH(1,1) model with an AR(1) term. The parameter estimates were obtained
by the method of quas maximum likelihood. That is, the log-likelihood function of the data
was constructed by assuming that innovations are conditionally distributed as Gaussian.
Huber/White robust standard errors were computed accordingly. Specification tests carried
out after estimation failed to detect serial autocorrelation and missing ARCH effects,
showing that the chosen functional form is adequate for the data. The details are in Table 2.

[Table 2 about here]

Table 3 presents our backtesting results for each individual asset and for the
portfolio. As a decision rule, we took a p-value less than 5 percent to be evidence against
the null hypothesis. Panel (a) shows the popul ation quantiles computed by assuming normal
and t innovations, and by the methods of conditional and unconditional EVT. Out of the 12
cases analyzed, the null hypothesis is regjected 11 times under the normal assumption, 9
times under the t assumption, and 3 and 9 times under the conditional and unconditional
EVT assumptions, respectively. In particular, the conditional EVT approach never rejects
the null hypothesis for the 99-percent quantile. Panel (b) in turn shows the backtesting
results for the quantiles obtained from the empirical distribution of the standardized
residuals. Overall, this procedure shows a similar pattern to that obtained under the
conditional EVT assumption: the null hypothesisis rejected only thrice and no violations of
the null take place for the 99-percent quantile.

Finally, Panel (c) of Table 3 shows 99-percent value at risk estimates on March 24,
2000 for the $1-million portfolio earlier described. We used five-year and ten-year
windows for prediction, and computed the value at risk for that particular day by the four
methods in Panels (a) and (b). Aswe can see, when we use alonger- time horizon window,
risk tends to be underestimated by all methods. In addition, under the conditional normal,
conditional t and unconditional EVT assumptions, the potential loss a the 99 percent
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confidence level is always underestimated with respect to the EVT and empirical quantiles
methods. For instance, under the unconditional EVT procedure, and using the five-year
window, the 99-percent value at risk for March 24, 2000 is $26,516, which is over $14,000
lower than that yielded by the conditional EVT and empirical quantile procedures.

[Table 3 about here]

Figure 3 depicts the actual portfolio loss over 2000-2002 and the 99-percent value at
risk predicted by the conditional and unconditional EVT procedures. (This is the case above
where the first 10 years of data are used for estimation, and three years are left for
prediction). The years 2000 and 2001 stand out as stress periods. The figure clearly
illustrates the fact that the unconditiona EVT estimate does not respond quickly to
changing volatility and, therefore, it tends to be violated more often than the conditional

EVT estimate.
[Figure 3 about here]

3.2.2 Other U.S. Stock Indices

We also studied the properties of our four VaR-estimation methods for other U.S.
stock indices: the Standard and Poor (S&P) 500, the Wilshire 5000, and the Russell 3000.
The Wilshire 5000 is the most comprehensive stock of all U.S. indexes, encompassing
small-cap, mid-cap, and large-cap stocks. The index is comprised by over 7,000 stocks, and
it is considered a better representation of total market performance than the S&P 500. The
Russell 3000 Index is composed of 3,000 large U.S. Companies, as determined by market
capitalization. This portfolio represents approximately 98 percent of the U.S. equity market.
The sample periods for the S&P500, the Wilshire 5000 and the Russell 3000 are,
respectively, January 1980-December 2002, January 1991-December 2002, and January
1988-December 2002. All returns series are daily.

Panel (a) of Table 4 shows again that all quantile estimators do very poorly except
for the conditional EVT approach, which fails only once. The prediction errors are
particularly high for the Wilshire 5000 index: only in two cases the null hypothesis is not
rejected. As Figure 4 shows, this index exhibits a particularly volatile behavior from 1997
onwards. Panel (b) of Table 4 shows in turn that the empirical quantiles approach behaves
quite successfully for the S& P 500 and the Russell 3000, in that the null hypothesisis never
rejected. Again the poorest fit is obtained for the Wilshire index.

[Table 4 and Figure 4 about here]
3.2.3 Stock Markets outside the U.S.

In this section, we look at stock markets outside the U.S.: Latin America, Asia, and
Europe. For each continent, we selected the most representative stock indices. Specifically,
for Latin America we chose the BOVESPA (Brazil), the MERVAL (Argenting), the IPSA
(Chile), and the IPC (Mexico). The BOVESPA is atota return index weighted by traded
volume and is comprised by the most liquid stocks traded on the Sao Paulo Stock
Exchange. Argentinads MERVAL is the market value of a stock portfolio, selected
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according to participation in the Buenos Aires Stock Exchange, number of transactions and
trading value. The IPSA is composed of the 40 stocks with the highest average annual
trading volume on the Santiago Stock Exchange, Chile. And, the Mexican Stock Exchange
Index (IPC) is a capitalization-weighted index of the leading stocks traded on the Mexican
Stock Exchange. The sample period of each index covers approximately from the early
1990’ s until December 2002.

For Asia, we picked the Nikkei-225 (Japan), the Hang Seng (Hong Kong), the
Kuala Lumpur Stock Exchange Composite Index, KLSE (Malaysia), the Korean Composite
Stock Price Index (Kospi)-200 (South Korea), and the Straits Time Index, STI (Singapore).
The Nikkei-225 Stock Average is a price-weighted index of 225 top-rated Japanese
companies listed in the First Section of the Tokyo Stock Exchange. The Hang Seng is a
capitalization-weighted index of 33 companies that represent approximately 70 percent of
the total market capitalization of the Stock Exchange of Hong Kong. The KLSE Composite
Index is a broad-based capitalization-weighted index of 100 stocks designed to measure the
performance of the Kuala Lumpur Stock Exchange. The KOSPI-200 is a capitalization-
weighted index of 200 Korean stocks, which make up 93 percent of the total market value
of the Korea Stock Exchange. And, the Straits Times Index (STI1) is a modified market
capitalization-weighted index comprised of the most heavily weighted and active stocks
traded on the Stock Exchange of Singapore. The sample period for the Nikkei-225, the
Hang Seng, and the STI covers from the late 1980’s until December 2002, whereas the
sample periods for the KLSE and the KOSPI-200 cover from the early 1990's until
December 2002.

Finally, for Europe, we selected the DAX-30 (Germany), the CAC-40 (France), the
FTSE-250 (U.K.), and the IBEX-35 (Spain). The German Stock Index (DAX) is a total
return index of 30 selected German blue chip stocks traded on the Frankfurt Stock
Exchange. The CAC-40 is a narrow-based, modified capitalization-weighted index of 40
companies listed on the Paris Stock Exchange. The FTSE (Financia Times Stock
Exchange)-250 is a capitalization-weighted index of the 250 most highly capitalized
companies, outside of the FTSE-100, traded on the London Stock Exchange. And, the
IBEX 35 is the official index for the market segment of continuously traded stocks. The
index sample is composed of the 35 most actively traded stocks among the securities
quoted on the Joint Stock Exchange System of the four Spanish stock exchanges. Except
for the FTSE 250, whose sample period covers form the mid-1980's to December 2002, the
sample period for the other three indices goes from the early 1990's until December 2002
or the early months of 2003.

Table 5 shows descriptive statistics for the above indices. All return series are daily.
Both Brazil and Argentina stand out among all other countries for their high volatility, as
measured by the standard deviation and interquartile range of their indices returns. By
contrast, Chile and Mexico show similar volatility to that of Asian and European countries.
The index that exhibits the lowest volatility isthe U.K.’s FTSE-250 index.

[Table 5 about here]
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All returns series strongly reject the assumption of normality because of their high
kurtosis (which ranges between 5.3 and 73.7) and skewness which departs from zero. In
particular, the most skewed and leptokurtic series is Hong Kong's Hang Seng. Figure 4
sheds more light on the evolution of each series. In general, stock markets exhibit more
volatility from 1998 onwards. This is particularly noticeable for the KOSPI-200 return
series.

[Figure 4 about here]

Table 6, panels (a) through (f), shows value-at-risk estimation for our sample of
countries. For Europe, we find a similar pattern to that of the U.S (panels (c) and (d)).:
quantiles computed by the conditional standard normal, conditional Student-t, and
unconditional EVT methods are far off the mark, while the conditional EVT and empirical
quantile methods prove quite successful. (The former fails only once whereas the latter fails
twice out of 12 cases). The Latin American and Asian return series exhibit a dightly
different behavior. In particular, for Latin America the methods closest to the mark are
conditional EVT, unconditional EVT, and the empirical quantiles (panels (a) and (b)).
Unexpectedly, the unconditional EVT method outdoes the conditional EVT method in the
99.5-percent VaR for MERVAL. This is a rare case because we would expect the
conditional EVT method to do better than the unconditional EVT one, given that the former
adjusts more quickly to changing volatility than the latter. For Asia (panels (e) and (f)) in
turn, the conditional normal method has the worst performance, like in the above cases, but
the conditional-t method do as well as the conditional-EVT method. In particular, the
conditional-t method never fails for those returns series that are failed-tail but relatively
symmetric, namely, the KLSE, KOSPI-200, and STI. Finally, we again encounter a case
where the unconditional EVT method outdoes the conditional EVT method (99.9-percent
VaR for the Nikkei-225). As a whole, the unconditiona EVT and empirical quantile
methods work best for Asia, rejecting the null hypothesis only once.

[Table 6 about here]

To summarize our results in Sections 3.2.1 through 3.2.3, we conclude that, out of
the 60 cases analyzed, the conditional-normal and conditional-t methods have the poorest
performance, failing 34 and 22 times, respectively. They are followed by the unconditional-
EVT and empirical-quantile methods, which fail 19 and 10 times, respectively. Finally, the
conditional-EVT method fails only 6 times. Although not infallible, the latter proves to be
the best procedure, among the ones analyzed, to compute value at risk.

v Further Applications of Extreme Value Theory: Returns Dependence

This section benefits from work by Coles, Heffernan, and Twan (1999), and from
recent extensions by Poon, Rockinger, and Tawn (2003). Poon et a. introduce a special
case of threshold modeling connected with the generalized Pareto distribution for the
Fréchet case. For this particular case, the taill of a random variable Z above a (high)
threshold u can be approximated as

1-F(@2)=Pr(Zz<2)~z""L(2) for z>u (18)
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where L(z) is a slowly varying function of z,> and n>0. If treated as a constant for all z>u,
that is L(z)=c, and under the assumption of n independent observations, the maximum-
likelihood estimatorsfor n and c are

rA]=i y IogE!ﬂE o=y (19)
n, £ u n

where zy,..., Z,, ,, are the n, observations above the threshold u. 1 is known as the Hill
estimator

2
The asymptotic variance of i is given by avar(n) = n—. The asymptotic variance
nU

2/n I 2
of ¢ can be obtained by the delta method, avar(&):&Lg(u).

n2 2

n

The first step is to transform the original variables to a common marginal
distribution. Let (X,Y) be bivariate returns with corresponding cumulative distributions
functions Fx and Fy. The bivariate returns are transformed to unit Fréchet marginals (S, T)
using the transformation

s=-_ 1! 7-- 1 S50, T>0. (20)
InF, (X) InF, (Y)

Under this transformation, Pr(S>s)=Pr(T>s)(s *.° Asboth Sand T are on acommon
scale, the events {S>s} and {T>s}, for large values of s, correspond to equally extreme
events for each one. Given that Pr(S>s) -0 as s- o, it becomes natural to consider the
conditional probability Pr(T>g|S>s) for large s. If (ST) are perfectly dependent,
Pr(T>5|S>s)=1. By contrast, if (S,T) are exactly independent, Pr(T>s|S>s)=Pr(T>s), which
tends to zero as s— . Let us define

X =limPr(T >sS>¥9) O<x<1. (21)

Variables are caled asymptoticaly dependent if x>0, and asymptotically
independent if x=0. In other words, x measures the degree of dependence that lingersin the
limit. Nonetheless, random variables, which are asymptotically independent, may show
different degrees of dependence for finite levels of s. Based on this fact, Coles, Heffernan
and Twan (1999) proposed the following measure of dependence

> A function on L on (0, «) isslowly varying if limy .., L(tz)/L(z)=1 for t>0.

®Pr(S>8)=Pr(—1/InFx (X)>8)=Pr(InFx (X)>-1/s)=Pr(F(X)>exp(-1/s)), given that the log function is monotonic.
Furthermore, F(X)[U(0,1). Therefore, Prob(S>s)=1-exp(-1/s)=L(s) s ‘0 s, where L(s) is a slow varying
function of s.
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< = lim 2log(Pr(S>9))

= - -1<x<1. (22)
s-=|log(Pr(S>s,T >9))

This is a well-defined measure of asymptotic independence as it gives the rate at
which Pr(T>5|S>s) - 0. Values of X >0, x =0 and X <0 are approximate measure of positive
dependence, exact independence, and negative dependence.

The pair (X, X ) provide all the necessary information to characterize both the form
and degree of extreme dependence. For asymptotically dependent variables, X =1 and the

degree of dependence is measured by x>0. For asymptotic independent variables, x=0 and
the degree of dependence is measured by X . Therefore, one should first test if x =1 before

reaching any conclusion about the dependence based on .
It can be shown that
Pr(S>s, T>s)[L(s)s % asso o,

where 0<&<1 and L(s) is a slowly varying function. Given that Pr(S>s)(5 ™%, X boils down
to x =28 -1.
Thetest of dependence isimplemented by letting Z=min(S,T), and noting that
Pr(Z>z)=Pr{ min(S,T)>z}
=Pr(S>z, T>2)
=L(z) %
=dz % for z>u, (23)
for some high threshold u. The above equation shows that & is the tail index of the
univariate random variable Z. Therefore, it can be obtained by the Hill estimator,
constrained to the interval (0, 1], and d, the scale parameter, can be computed as explained
earlier.

Under the assumption of independent observations on Z, we have

ol 2 " : ~ v 2
X = EZ Iog%(” %1 Var(x) = o+ (24)
nu = u n,

where i Is asymptotically normal.

The decision ruleis: if X issignificantly lessthan 1, that iis, if X +1.96./Var(x) <1,
we conclude that the variables are asymptotically independent and take x=0. In case thereis
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no enough evidence to reject the null hypothesis x =1, we estimate X under the assumption
un, un,(n-n,)

and Var(X) = e

that X =& =1.Insuchcase, X =

The application of this section deals with tail dependence of the DJIA, and the 10-
year T-Bill and the Nasdaq returns data, which were analyzed in Section 3.2.1. To start
with, we draw scatter plots of the DJIA and the T-Bill and the DJIA and the Nasdag. The
results are depicted in Figure 7. Simple inspection of the plots shows that the correlation
between the DJIA and the T-Bill isvery low (equal to 0.04), and that thiswill translate into
asymptotic independence of both negative and positive extremes. By contrast, the DJIA and
the Nasdag exhibits a much higher correlation coefficient (equal to 0.68), and the
dependence of their returns is persistent for both negative and positive extremes. However,
as discussed below, taill dependence is quite sensitive to filtering out the data for both
heterocedasticity and serial correlation.

[Figure 7 about here]

In order to control for both heteroscedasticity and serial correlation, we use a
diagona VEC model or DVEC (1, 1)

r, =c+Pr_ +g, t=2, ..., T, (25)

whereriisak x 1 vector of asset returns, c isak x 1 vector of constant terms, ri—; isak x 1
vector containing the first lag of r;, B isak x 1 vector, and € is ak x 1 white noise vector
with zero mean. The matrix variance-covariance of & is given in this case by

X =A,+A, O g.,)+BOX,, =2, ..., T, (26)

where Ay, A1, B, Z; and &-1&-1' are k x k matrices, for t=2, ...,T, and [ denotes the
Hadamar product (e.g., Bollerslev, Engle, and Wooldridge, 1988; Zivot and Wang, 2003,
chapter 13). In order to obtain the elements of X;, only the lower part of the system in (26)
is considered. For our application, we have r=(rpaa, rt-sil, rNasdaq){. The choice of model
(25)-(26) is based on its good fit to the data.

Let us now consider independent observations of negative returns (X,Yy), t=2,...,T,
with unknown distribution F. It can be shown that the random variables u=F (X,) and

vi=F, (Y,) are both distributed as Uniform, where Fx and Fy are the marginal distribution

functions. An informal procedure to detect extremal dependence (in the left tail, in this
case) consists of examining the large values of u and v; (see, for example, Coles,
Heffernan, and Tawn, 1999). Since Fx and Fy are unknown, estimates are obtained from
the empirical distribution functions.

Panel (@) of Figure 7 shows left-tail dependence for the unfiltered data of the
Nasdag and the DJIA returns and the T-Bill and the DJIA returns. Evidence of rather strong
dependence of the Nasdag and the DJIA in bear markets is shown, while little evidence is
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found for the T-Bill and the DJIA. Pand (b) in turn shows how extrema dependence
decreases when filtering out the data for both heteroscedasticity and seria correlation.
Specificaly, the corresponding pairs of negative standardized residuals obtained from the
DVEC(1,1) model are shown. The extremal dependence of the Nasdag and the DJIA is
substantially reduced, while the T-Bill and the DJIA show no pattern of extremal
dependence as before.

[Figure 7 about here]

The next step consists of testing tail dependence formally by using the machinery
described earlier. In order to do so, one has to choose an appropriate threshold u to compute
the Hill estimator. The simplest approach is to plot it against u and find a proper u, such
that the Hill estimator appears to be stable (see, for instance, Tsay, 2001, chapter 7).
However, in some cases such stability is not easy to visualize. That is why formal
approaches to find u have been designed.

In a recent article, Matthys and Beirlant (2000) overview several methods of
adaptive threshold selection that have been developed in recent years. The authors
distinguish two approaches to estimating the optima threshold. One consists of
constructing an estimator for the asymptotic mean-squared error (AMSE) of the Hill
estimator, and choosing the threshold that minimizes it. This approach includes a bootstrap
method (the one used by Poon et al.) and an exponential regression model. The latter is
studied in detailed in Beirlant, Diercks, Goegebeur, and Matthys (1999). The second
approach derives estimators directly for u, based on the representation of the AMSE of the
Hill estimator.

Given that the exponential regression approach is easy to implement, it is our choice

to find the optimal threshold. Feuerverger and Hall (1999) and Beirlant et al (1999) derived
an exponential regression model for the log-spacings of upper statistics

j(Iog(Xn_,-+1,n)—Iog(Xn_j,n)Dg/+ b”’k%l% Ej 1<j<k 27)

where X3n<Xop<...<Xnp, by = b%@ 1<k<n-1, (f;, f2, ...,fx) is a vector of
independent standard exponential random variables, and p<Oisareal constant.

If we fix the threshold u at the (k+1)™ largest observation, the Hill estimator is given

1 k
by H, , = « Z log(X ,_j:1.n) —109(X . ,) - Inturn this can be rewritten as
J:

1
Hk,n = E((Iog(xnn) - log(xn—l,n)) + 2(|Og(xn—l,n) - Iog(xn—z,n)) Tt k(log(xn—k+l,n) - log(xn—k,n)))
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18
_E ]Z J(Iog(xn—j+l,n) - log(xn—j,n)) . (28)

The Hill estimator written this way is the maximum likelihood estimator of y in the
reduced model

jog(X \ju1n) —109(X,,; ) ~ Y, 1<j=k.

Given that the Hill estimator is an average of independent exponential random

variables, its variance can be approximated by
2

Var(H, ) ~ ‘l’( . (29)

while its bias arises from neglecting the second term in the right-hand side of equation (27)

bn,k
1-p

E(H.,«—V) ~ (30)

For n— o, k - 00, and k/n - 0, the Hill estimator is asymptotically normal

S,y P N
| 1-p0O

From above, the AMSE of the Hill estimator is given by

b 2
AMSEHkn=%%"§+T( . (31)
" H-p

Therefore, the optimal threshold k% is defined as the one that minimizes (31)

b 2
k™ = argmin(AMSEH, ) :agmin%%*g+y5 (32)
K ’ k -p K E[

The algorithm for the exponential regression goes as follows

« In model (26) fix p a po=—1 and calculate |least-squares estimates y, and Bn’k for
eachk O {3,...,n}.
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S ¥ -
. DetermineAMSEHkn=H“’fg+ykfOka{3,---,n},Withpk590-7
" ogohg K

e Determine Egm =agmin(AMSEH, ) and estimatey by H_., .

3<ks<n

The first step of the algorithm boils down to running a linear regression of

j(n+1

j(log(X,_js1n) —l0g(X,_; ,)) onaconstant term and +1)2) foreachk O {3,..., n}.

Figure 8 shows the Hill estimator for the tail index & in equation (23) for return
pairs, evaluated at different values of the threshold u. Panel (a) depicts right- and left-tail
dependence of the raw returns (T-Bill/DJIA and Nasdag/DJIA), while Panel (b) depicts the
right- and left-tail dependence of the corresponding standardized residuals. Simple
inspections of the graphs do not shed much light on the optimal threshold to be selected in
each case.

[Figure 8 about here]

Therefore, we resorted to Beirlant et al.’s procedure to determine k*, the optimal
threshold. The results are reported in Table 7. The extremal dependence of the T-Bill and
the DJIA returns in the left and right tails is low, as Panel (@) shows. (Our graphica
analysis had already suggested the low dependence in the left tail for this pair). The Nasdaq
and the Dow Jones, by contrast, show asymptotic independence in the left tail (bear
markets) but asymptotic dependence in the right tail (bull markets). However, such finding
does not longer hold after filtering the data. In fact, for the filtered data, we reached the
same conclusion as Poon et al.: tail dependence tends to be stronger in bear markets than in
bull markets for both pairs: T-Bill/DJA and Nasdag/T-Bill. In addition, for al cases,
asymptotic independence cannot be rejected (Panel (b)).

[Table 7 about here]
A% Conclusions

Extreme value theory (EVT) has emerged as one of the most important statistical
disciplines for the applied sciences over the last fifty years, and for other fields in recent
years (e.g., finance). The distinguishing feature of EVT is to quantify the stochastic
behavior of a process at unusually large or small levels. Specifically, EVT usually requires
estimation of the probability of events that are more extreme than any other that has been
previously observed.

This article has tackled two key issues in risk management: computation of value at
risk (VaR) and stock market dependence using the new approach of EVT. First, We
analyzed different ways to compute value at risk for stock markets across the United States,

" Matthys and Beirlant point out that for many distributions the exponential regression method works better,
in MSE-sensg, if the nuisance parameter p is fixed at some value pg rather than estimated.
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Latin America, Europe, and Asia. We concluded that quantile estimates based on EVT are
best. Secondly, we tested the degree of extremal dependence across different financial
markets in the United States. We concluded that bond markets do not exhibit extremal
dependence of stock markets, and much of the extremal dependence across stock markets
disappear when controlling for both serial correlation and heteroscedasticity.

References

Beirlant, J., G. Dierckx, Y. Goegebeur, and G. Matthys (2000), “Tail Index Estimation and
an Exponential Regression Model” . Extremes 2:2, 177-200.

Bollerdev, T., R.F. Engle, and J.M. Wooldridge (1998), “A Capital-Asset Pricing Model
with Time-Varying Covariances,” Journal of Political Economy 96, 116-131.

Coles S., J. Heffernan, and J. Tawn (1999), “Dependence Measures for Extreme Vaue
Analyses,” Extremes 2(4), 339-365.

Embrechts P., C. Kluppelberg, and T. Mikosch (1997), Modelling Extremal Events for
Insurance and Finance. Springer-Verlag Berlin Heidelberg.

Engle R., and G. Gonzalez-Rivera (1991), “Semiparametric ARCH models,” Journal of
Business and Economic Satistics 9(4): 345-59.

Engle, R. (2001), “GARCH 101: The Use of ARCH/GARCH Modes in Applied
Econometrics.” Journal of Economic Perspectives, Volume 15(4), pp. 157-168.

Fisher, R. and L. Tippet (1928), “Limiting Forms of the Frequency Distribution of the
Largest or Smallest Member of a Sample,” Proceedings of the Cambridge Philosophical
Society 24, 180-190.

Huber, P.J. (1967), “The Behavior of Maximum Likelihood Estimates under Non-Standard
Assumptions,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability 1(1), pp. 221-233.

Larsen R. and M. Marx (1986), An Introduction to Mathematical Satistics and Its
Applications. Second edition. Prentice-Hall, Englewoods Cliffs, New Jersey.

Matthys G., and J. Berlant (2000), “Adaptive Threshold Selection in Tail Index
Estimation,” Working paper University Center for Statistics at the Catholic University
Leuven.

McNell A. and R. Frey (2000), “Estimation of Tail-Related Risk Measures for
Heterocedastic Financial Times Series: an Extreme Vaue Approach,” Journal of Empirical
Finance 7, pp. 271-300.



20

Poon, S., M. Rockinger, and J. Tawn (2003), “Nonparametric Extreme Vaue Dependence
Measures and Finance Applications,” Satistica Snica. Forthcoming July.

Tsay, R. (2001), Analysis of Financial Time Series. John Wiley & Sons; 1st edition.

White, H. (1982), “Maximum Likelihood Estimation of Misspecified Models,”
Econometrica 50(1), pp. 1-26.

Zivot, E., and J. Wang (2003), Modeling Financial Times Series with SPlus. Insightful
Corporation.



21

TABLES
Table 1 Descriptive Statistics of Daily Returns for the U.S.
T-Bill DJIA Nasdaq Portfolio
Mean 0.000 0.000 0.000 0.000
Median 0.000 0.000 0.001 0.001
Std. Dev. 0.006 0.010 0.016 0.011
1Q range 0.007 0.011 0.014 0.010
Minimum -0.036 -0.075 -0.102 -0.067
Maximum 0.022 0.062 0.133 0.070
Kurtosis 5.228 7.546 8.500 7.107
Skewness -0.379 -0.251 —0.008 —-0.067
Jarque-Bera 748.9 2,829.7 4,090.9 2,284.1
p-value 0.000 0.000 0.000 0.000
Observations 3,246 3,246 3,246 3,246

Sample period  Jan 90-Dec 02 Jan 90-Dec 02 Jan 90-Dec 02 Jan 90-Dec 02

Table 2 GARCH(1,1) model for the Portfolio Return (ry)
Coefficient Value St. Error Z-test P-value
Constant 5.57E-04 1.40E-04 3971 0.000

M1 1.22E-01 0.020 5.984 0.000
Variance equation

Constant 1.33E-06 7.11E-07 1.868 0.062

ARCH(1) 0.092 0.028 3.258 0.001

GARCH(1) 0.894 0.034 26.160 0.000

Notes: (1) Parameter estimates are obtained by assuming that the conditional distribution of the innovationsis
gaussian. (2) Robust standard errors are computed by Huber/White's method. (3) Specification tests for
standardized residuals: i) Normality test (Jarque-Bera)= 596.2, p-value=0.000; ii) Ljung-Box test for
standardized residuals (12 lags) =13.55, p-value= 0.330, iii) Ljung-Box test for squared standardized residuals
(12 lags)=9.443, p-value=0.665, iv) ARCH effects test (12 lags)=9.19, p-value=0.686. 4) Data source:
Bloomberg.
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Table 3 Backtesting Results
€) Population Quantiles
95%  95% 95% 95% 99%  99% 99% 99% 99.5% 99.5% 99.5% 99.5%
cond. cond. cond.. unc. cond. cond. cond. wunc. cond. cond. cond. unc.
normal t EVT EVT normal t EVT EVT normal t EVT EVT
Portfolio
% error 731% 7.76% 6.46% 9.41% 2.05% 1.55% 1.20% 1.95% 150% 1.05% 0.55% 0.95%
binomial test 4,74 566 299 9.05 4,73 248 091 4728 6.35 349 032 286
p-value 0.00 0.00 0.00 0.00 0.00 0.01 018 0.00 0.00 0.00 037 0.00
Nasdaq
% error 7.66% 7.81% 6.61% 10.27% 1.80% 1.40% 0.80% 250% 1.25% 0.75% 0.65% 1.25%
binomial test 5.46 577 330 10.80 3.61 181 -089 6.75 4,76 159 09 476
p-value 0.00 0.00 0.00 0.00 0.00 0.04 019 0.00 0.00 0.06 017 0.00
Rate
% error 491% 5.21% 5.11% 551% 2.00% 150% 1.20% 1.20% 1.55% 0.70% 0.65% 0.70%
binomial test -019 043 022 1.04 450 226 091 091 6.67 127 09 127
p-vaue 0.42 034 041 0.15 0.00 0.01 018 0.18 0.00 010 017 0.0
DJIA
% error 5.86% 6.31% 576% 8.06% 2.05% 155% 1.10% 1.85% 1.65% 0.95% 0.80% 1.10%
binomial test 1.76 268 156 6.28 4,73 248 046 383 7.30 286 191 381
p-value 0.04 0.00 0.06 0.00 0.00 0.01 0.68 0.00 0.00 0.00 0.03 0.00
Rq'ection null 3 3 2 3 4 4 0 3 4 2 1 3
by quantile
(b) Empirical Quantiles
95% 99% 99.5%
Portfolio
% error 6.36% 1.05% 0.60%
binomial test 2.79 0.23 0.64
p-value 0.00 0.41 0.26
Nasdaq
% error 6.51% 0.95% 0.60%
binomial test 3.10 -0.22 0.64
p-value 0.00 0.41 0.26
Rate
% error 5.16% 1.15% 0.90%
binomial test 0.32 0.68 2.54
p-value 0.37 0.25 0.01
DJIA
% error 5.66% 1.35% 0.75%
binomial test 1.35 1.58 1.59
p-value 0.09 0.06 0.06
Rejection of null by quantile 2 0 1
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Table 3 Continued

(© Vaue at risk for the portfolio on March 24, 2000 in US dollars

99-percent Value at risk

conditional  conditional conditional unconditional empirical
normal t EVT EVT
5- year window data ~ $32,234.8 $35,626.4 $41,018.9 $26,516.0 $41,092.6
10- year window data ~ $27,056.8 $30,918.6 $33,078.6 $22,716.5 $34,041.1
Actual losses
March, 24 $190.0

March, 27 $2,993.2
April, 14 $66,607.4

Notes: (1) In Panels (a) and (b), backtesting was carried out by leaving the last five years of data for
prediction. A p-value lessthan 5 percent is taken as evidence against the null hypothesis.
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Table 4 Other U.S Indices
(a) Population quantiles

95% 95% 95% 95% 99% 99% 99% 99% 995% 995% 99.5% 99.5%
cond. cond. cond unc. cond. cond. cond unc. cond. cond. cond unc.
normal t EVT EVT normal t EVT EVT normal t EVT EVT

S&P 500

% error 492% 555% 519% 6.05% 186% 1.36% 1.08% 125% 1.29% 0.67% 0.52% O0.73%
binomial test -025 174 062 333 5.96 248 059 175 7.79 164 021 226
p-vaue 0.60 004 027 0.00 0.00 0.01 028 0.04 0.00 0.05 058 0.01

Wilshire 5000

% error 6.88% 7.25% 6.37% 9.01% 254% 1.76% 129% 1.81% 1.86% 1.04% 0.62% 0.88%
binomial test 3.80 453 276  8.08 6.79 3.36 130 359 8.50 334 075 237
p-value 0.00 0.00 0.00 0.00 0.00 0.00 010 0.00 0.00 000 023 001

Russell 3000

% error 556% 6.46% 552% 6.96% 216% 155% 130% 141% 162% 0.90% 0.47% 0.58%
binomial test 134 352 125 474 6.16 2.92 158 215 8.39 300 -023 058

p-value 0.09 000 010 0.00 0.00 0.00 0.06  0.02 0.00 000 041 028
Total rejections 1 3 1 3 3 3 0 3 3 2 0 2
by quantile

(b) Empirical quantiles

95% 99% 99.5%
S&P 500
% error 517% 1.21% 0.67%
binomial test 0.55 1.46 1.64
p-value 0.29 0.07 0.05
Wilshire 5000
% error 6.47% 1.45% 0.78%
binomial test 2.96 1.98 1.72
p-value 0.00 0.02 0.04
Russell 3000
% error 5.52% 1.26% 0.54%
binomial test 1.25 1.39 0.31
p-value 0.10 0.08 0.38
Totd rejections null by quantile 1 1 1

Notes: 1) The sample periods for the S&P 500, the Wilshire 5000, and the Russell 3000 are, respectively,
January 1980-December 2002, January 1991-December 2002, and January 1988-December 2002. All returns
series are daily. 2) The first four years of the data are left for backtesting in each case. A p-value less than 5
percent is taken as evidence against the null hypothesis. 3) Data source: Bloomberg.



Table 5 Descriptive Statistics of Daily Stock Returns outside the U.S.

@ Latin America

BOVESPA IPSA MERVAL IPC
Mean 0.004 0.001 0.001 0.001
Median 0.003 0.000 0.000 0.000
Std. Dev. 0.035 0.013 0.031 0.018
IQ range 0.032 0.014 0.028 0.019
Minimum -0.395 -0.085 -0.185 -0.143
Maximum 0.345 0.090 0.262 0.122
Kurtosis 24.441 7.507 11.053 7.965
Skewness -0.129 0.212 0.892 -0.030
p-value JB test 0.000 0.000 0.000 0.000
Observations 2,710 3,238 3,207 2,741
Sampleperiod  Jan92-Dec 02 Jan 90-Dec 02 Jan 90-Dec 02  Jan 92-Dec 02
(b) Asia
Nikkei-225 Hang Seng  KLSE Comp. KOSPI-200 STI
Mean 0.000 0.000 0.000 0.000 0.000
Median 0.000 0.001 0.000 -0.001 0.000
Std. Dev. 0.014 0.019 0.019 0.022 0.013
IQ range 0.014 0.016 0.015 0.021 0.012
Minimum -0.161 -0.405 -0.242 -0.151 -0.160
Maximum 0.124 0.172 0.208 0.108 0.129
Kurtosis 11.106 73.705 33.406 6.570 16.997
Skewness -0.077 -3.333 0.412 0.050 -0.406
p-value JB test 0.000 0.000 0.000 0.000 0.000
Observations 4,676 3,957 2,214 3,174 3,730
Sampleperiod  Jan 84-Dec 02 Jan87-Dec 02 Jan94-Dec02 Jan 90-Dec 02  Jan 88-Dec 02
(c) Europe
DAX-30 CAC-40 FTSE-250 IBEX-35
Mean 0.000 0.000 0.000 0.000
Median 0.001 0.000 0.001 0.001
Std. Dev. 0.014 0.014 0.008 0.014
1Q range 0.015 0.016 0.007 0.016
Minimum -0.099 -0.077 -0.120 -0.073
Maximum 0.076 0.068 0.071 0.063
Kurtosis 6.997 5.371 30.653 5.313
Skewness -0.278 -0.121 -1.951 -0.160
p-value JB test 0.000 0.000 0.000 0.000
Observations 3,009 3,260 4,286 2,760
Sampleperiod  Jan91-Dec02  Mar 90-Mar 03  Jan86-Dec 02  Feb 92-Feb 03

Notes: 1) JB test stands for Jarque-Bera normality test. 2) Data source: Bloomberg.
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Table 6 Backtesting Results of Stock Markets outside the U.S.
(a) Latin America’s population quantiles
95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5%
cond. cond. cond wunc. cond. cond. cond. wunc. cond. cond. cond. unc.
normal t EVT EVT normal t EVT EVT normal t EVT EVT
BOVESPA
% error 574% 6.03% 5.68% 3.59% 1.80% 1.10% 1.10% 0.75% 1.04% 0.75% 0.64% 0.41%
binomial test 140 195 129 -268 332 042 042 -103 320 149 081 -0.56
p-value 008 003 010 000 000 034 034 015 000 0.07 021 0.29
IPSA
% error 4.86% 5.04% 5.93% 4.90% 1.25% 0.98% 1.03% 1.03% 0.98% 0.67% 0.62% 0.58%
binomial test -0.31 0.08 202 -021 118 -0.09 0.12 012 323 113 083 053
p-value 038 047 002 042 012 046 045 045 000 013 020 0.30
MERVAL
% error 6.32% 6.81% 5.78% 4.65% 2.53% 1.90% 1.31% 0.81% 1.99% 1.04% 0.86% 0.41%
binomial test 285 392 168 -0.76 722 424 146 -089 991 359 239 -0.63
p-value 0.00 000 005 022 000 000 0.07 019 0.00 0.00 0.01 0.27
IPC
% error 4.92% 4.86% 5.60% 5.03% 1.43% 1.03% 1.03% 0.80% 1.03% 0.69% 0.57% 0.40%
binomial test -0.16 -027 116 0.06 180 012 012 -084 314 110 043 -0.59
p-value 044 039 012 048 004 045 045 020 000 013 034 0.28
Total rejections 1 2 2 1 3 1 0 0 4 1 1 0

null by quantile

(b) Latin America s empirical quantiles

95% 99% 99.5%

BOVESPA

% error 5.56% 1.16% 0.70%
binomial test 1.07 066 1.15

p-value 0.14 0.25 0.13

IPSA

% error 5.93% 1.03% 0.62%
binomial test 202 012 0.83

p-value 0.02 055 0.80
MERVAL

% error 6.18% 1.13% 0.68%
binomial test 255 061 118

p-value 0.01 0.27 0.12

IPC

% error 5.43% 1.09% 0.74%
binomial test 0.83 036 144

p-value 0.20 0.36 0.07
violations 0 0 0

Tota rejections null by quantile 2 0 0



(c) Europe' s population quantiles
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95% 95%  95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5%
cond. cond. cond. wunc. cond. cond. cond. wunc. cond. cond. cond. unc.
normal t EVT EVT normal t EVT EVT normal t EVT EVT
DAX-30
% error 6.38% 6.83% 5.93% 7.93% 1.65% 1.15% 0.90% 2.09% 1.00% 0.75% 0.50% 1.15%
binomial test 284 376 192 601 290 066 -046 492 316 157 -0.01 411
p-value 000 000 003 000 000 025 032 0.00 0.00 0.06 0.50 0.00
CAC-40
% error 5.75% 5.97% 5.35% 6.41% 1.72% 1.37% 0.93% 1.81% 0.93% 0.66% 0.62% 0.97%
binomial test 163 211 076 308 346 177 -034 388 289 1.10 0.80 3.19
p-value 005 002 022 000 000 004 037 0.00 0.00 0.14 0.21 0.00
IBEX-35
% error 6.39% 6.74% 6.05% 7.48% 1.94% 1.54% 1.26% 1.60% 1.26% 0.86% 0.57% 0.91%
binomial test 289 110 080 319 39 228 108 252 448 211 0.42 2.45
p-value 000 014 021 000 000 001 014 0.01 0.00 0.02 0.34 0.01
FTSE-250
% error 5.59% 6.38% 5.49% 5.43% 2.05% 1.53% 1.10% 1.19% 1.53% 0.85% 0.55% 0.61%
binomial test 154 362 130 114 6.01 303 057 110 833 2.88 0.40 0.90
p-value 006 000 010 013 000 000 028 014 0.00 0.00 0.34 0.18
Total rejection 2 3 1 3 4 3 0 3 4 2 0 3
null by quantile
(d) Europe’s empirical quantiles
95% 99%  99.5%
DAX-30
% error 578% 1.00% 0.50%
binomial test 161 -0.01 -0.01
p-value 0.05 0.49 0.50
CAC-40
% error 526% 097% 0.57%
binomial test 0.57 -0.13 0.50
p-value 0.28 0.45 0.31
IBEX-35
% error 5.82% 1.66% 0.80%
binomial test 0.50 2.76 177
p-value 0.31 0.00 0.04
FTSE-250
% error 549% 1.10% 0.49%
binomial test 1.30 0.57 -0.09
p-value 0.10 0.28 0.46
Total rgjectionsnull by quantile 0 1 1
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(e Asia’s population quantiles
95% 95% 95% 95% 99% 99% 99% 99% 99.5% 99.5% 99.5% 99.5%
cond. cond. cond. wunc. cond. cond. cond. wunc. cond. cond. cond. unc.
normal t EVT EVT normal t EVT EVT normal t EVT EVT
Nikkei-225
% error 5.27% 6.19% 5.41% 5.84% 1.57% 1.08% 0.78% 0.97% 0.89% 0.38% 0.27% 0.54%
binomial test 076 333 114 235 347 050 -132 -016 338 -1.05 -198 0.35
p-value 022 000 0213 001 000 031 009 044 000 015 002 0.36
Hang Seng
% error 5.46% 5.89% 5.96% 5.59% 1.89% 1.25% 0.98% 1.01% 1.28% 0.71% 0.44% 0.61%
binomial test 114 224 240 148 485 135 -013 006 6.02 160 -048 0.82
p-value 013 001 001 007 000 009 045 052 000 0.05 032 021
KLSE Comp.
% error 3.75% 4.40% 4.08% 4.81% 1.31% 0.65% 0.65% 0.73% 0.90% 0.41% 0.49% 0.41%
binomial test -2.00 -0.96 -148 -030 107 -122 -122 -094 197 -046 -0.05 -0.46
p-value 002 017 007 038 0214 0211 011 017 002 032 048 0.32
KOSPI-200
% error 5.29% 5.65% 6.15% 6.93% 1.60% 1.23% 1.23% 2.05% 1.05% 0.59% 0.68% 0.87%
binomial test 062 140 248 414 280 109 10 49 364 061 122 243
p-value 027 008 001 000 000 0214 014 000 000 027 011 0.01
STI
% error 4.26% 5.27% 5.60% 5.57% 1.38% 1.02% 1.05% 0.95% 0.95% 0.51% 0.47% 0.58%
binomial test -1.79 066 145 136 201 010 029 -029 331 007 -020 0.61
p-value 004 025 007 009 002 046 039 039 0.00 047 042 0.27
Total rejections 2 2 1 1 3 0 0 0 4 0 1 0

null by quantile
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(f) Asiasempirical quantiles

95% 99% 99.5%

Nikkei-225

% error 5.19% 1.00% 0.41%
binomial test 0.54 0.00 —-0.81

p-value 0.30 050 021
Hang Seng

% error 5.83% 1.28% 0.61%
binomial test 207 153 0.82

p-value 0.02 0.06 021

KLSE Composite

% error 4.08% 0.90% 0.49%
binomial test -1.48 -0.36 -0.05

p-value 0.07 0.36 048
KOSPI-200

% error 6.20% 1.37% 0.77%
binomial test 258 173 177

p-value 0.00 0.04 0.04

STI

% error 5.67% 1.20% 0.69%
binomial test 162 106 142

p-value 0.05 0.15 0.08

violations 0 0 0

Tota rejections null by quantile 1 0 0

Notes: In Panels (a) through (f), the first four years of the data are left for backtesting in each case. A p-value
lessthan 5 percent is taken as evidence against the null hypothesis



Table 7 Tail Dependence for Daily Returns
(8) Raw Data
TBil/DJIA Nasdaq/DJIA TBill/DJIA Nasdaq/DJIA Nasdaq/DJIA
Left tail Right tail Right tail
k* 353 204 398 478
X 0.200 0.522 0.249 0.868 X 0.520
se. 0.064 0.107 0.062 0.085 se 0.219
t test -12.525 —-4.486 -11.997 -0.539
p value 0.000 0.000 0.000 0.062

(b) Filtered data

Left tail

TBil/DJIA Nasdaq/DJIA TBill/DJIA Nasdaq/DJIA

Left tail Right tail
k* 390 387 193 419
X 0.184 0.361 0.132 0.184
s.e 0.059 0.069 0.081 0.058
t test -13.616 -9.237 -10.657 -14.115
p value 0.000 0.000 0.000 0.000

30

Notes: The sample period is 1990-2002. x and X are computed based on tail index estimation of Fréchet
transformed margins of daily co-exceedances of return pairs, Z=min(S,T). In those cases in which asymptotic

dependence cannot beregjected (X = 1), X iscomputed under the assumption that x =1.



-0.01 0.01

-0.03

-0.02 0.06 0.12

-0.10

31

FIGURES
Figure 1 Engle’ s portfolio
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Behavior of Losses

Figure 2

Losses of DJIA
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Figure 3 99% Vaue at Risk and Portfolio Losses: 2000-2002
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Figure 4 Evolution of the Wilshire 5000 (1991-2002) and Russell 3000 (1988-2002) Returns
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Figure 5 Evolutions of Stock Indices Returns outside the U.S.
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Figure 5 Continued

(c) Asia
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Figure 6

Scatter Plots of Returns: DJIA, T-Bill and Nasdaq
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Tail dependence
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xi (Cl, p=0.95)

Xi (Cl, p =0.95)
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Figure 8 Hill Estimator for Tail Dependence

(a) Raw data
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Order Statistics
Positive dependence T-Bill and DJIA
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Order Statistics
Positive dependence Nasdaq and DJIA
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(b) Standardized residuals

Threshold Threshold
1380 588 403 321 269 238 213 2220 577 400 313 269 231 207
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Order Statistics Order Statistics
Negative dependence between T-Bill and DJIA (filtered) Negative dependence between Nasdaq and DJIA (fitered)
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Order Statistics
Positive dependence between T-Bill and DJIA (fitered)

Notes: The dotted lines are 95-percent confidence bands.
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Order Statistics
Positive dependence between Nasdaq and DJIA (fitered)
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