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Abstract 

This note shows how the transmission system can enhance competition in price-regulated 
power industries, thus extending earlier findings reported in the literature for deregulated 
industries. In the context of a two-technology, price-regulated power industry, we show 
that the interconnection of two markets initially supplied by a different monopoly reduces 
market power and raises welfare. We also show that the capacity of the transmission line 
plays a key role in determining whether market equilibrium lies closer to competition or 
monopoly.  
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1. Introduction 

 

This note shows how the transmission system can enhance competition in price-

regulated power industries, thus extending earlier findings reported in the literature for 

deregulated industries. The pro-competition effect of the transmission system operates 

differently in each case, however. While in deregulated industries it can result in less 

distorted prices, in price-regulated industries it can lead to more efficient generation 

portfolios.  The paper thus fills a gap in the literature which could be useful to 

policymakers in countries that have regulated power industries.  

 

We model an industry with two technologies (peaking and baseload), facing inelastic 

demand, in which an independent system operator dispatches the generating plants so as to 

minimize total operation cost and sets prices on peak-load criteria  (see Boiteux, 1960 and 

Crew et al., 1995). Variants of this regulatory scheme are used in several Latin American 

countries, including Chile, Dominican Republic, Nicaragua, Panama and Peru. In this 

setting, producers can exercise market power by reducing the share of baseload plants in 

the generation portfolio compared to the optimal solution (Arellano and Serra, 2005).  

 

We show that interconnection reduces market power and raises welfare. Then we prove 

that previous results by Borenstein et al (2000) for deregulated power markets also hold in 

the price-regulated case. In particular, we show that a transmission line connecting two 

symmetric markets each supplied by a single firm has a pro-competition effect even when 

it is not actually used. It is also shown that the line must have a minimum capacity for 

Cournot competition between both firms to be the outcome; otherwise one of the local 
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monopolies may find it profitable to restrict its production in order to congest the 

transmission line and thus be able to behave as a monopolist in the residual local market. 

However, as Borenstein et al (2000) show, even a congested transmission line has a pro-

competition effect, because the resultant composition of the generating portfolio is less 

distorted than without transmission.  

 

At first sight, construction of a line that will not be used might seem socially wasteful, since 

local monopolies can be efficiently regulated. Regulation is widely acknowledged to be a 

poor substitute for competition, however; and, in this case it would have to go further than 

usual, not only setting tariffs and making it compulsory to provide the service, but also 

specifying the composition of the generating portfolio to be used. Furthermore, not only 

does the transmission system play the role of “competition facilitator,” it also performs 

energy transportation and backup functions that may justify its construction. 

 

The literature also analyzes how transmission rights change the incentives to exercise 

market power. Oren et al (1995) argue that the owners of link-based transmission rights 

face perverse investment incentives because they can benefit by degrading the link or by 

limiting transmission expansion. Joskow and Tirole (2000) show that the possession of 

transmission rights by a genco in the energy-importing region enhances its market power 

by giving it an additional reason to restrict total output. Hogendorn (2003) finds that in the 

long run both gencos and the transmission company have incentives to keep the 

transmission system congested.  
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Léautier (2000), using a model involving price competition, shows that even when 

generators receive transmission payments, they will not always be willing to pay for an 

optimal transmission expansion, since they may be better off keeping the rents arising from 

the exercise of local market power. In our model, reductions of transmission capacity below 

the minimum level that makes it profitable for a firm to behave as a Cournot duopolist 

increases the generator’s profits. So, if generation companies had to decide on transmission 

capacity they would try to keep it at a minimum. 

 

The rest of this paper is organized as follows. Section 2 develops the spaceless market 

equilibrium under different competitive assumptions. Section 3 analyzes how 

interconnection between two isolated markets reduces market power.  Section 4 determines 

the minimum transmission capacity needed for full market integration. The last section 

concludes. 

  

2. Spaceless market equilibrium   

 
Our model involves a two-technology, linear-cost generating industry, where “b” 

denotes the baseload technology and “p” the peaking technology. In addition ci denotes the 

operating cost per unit and fi the capacity cost per unit, for technology i, i=b,p. Hence fb > fp 

and cb < cp. Gencos are free to choose their technology mix, but, once installed, an 

independent system operator dispatches the plants in strict merit order. 

 

 Demand is assumed to be inelastic, and is represented by a continuously 

differentiable load curve denoted by q(t), which designates consumption at the t-th highest 
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consumption hour. Finally, we assume that plants are always available to produce at full 

capacity and can adjust their production level instantaneously and without cost.1  

 

2.1 The perfect competition solution 

 

As demand is inelastic, welfare maximization implies minimizing the total cost of 

the electric power system. Given the assumptions made, the optimization problem can be 

formalized as follows:  
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where t(·) denotes the inverse of the load curve, qM
  the peak demand, kb and kp the installed 

capacity of baseload and peaking plants, respectively, and T the number of hours in the 

year. Thus t(0)=T and t(qM)=0. This specification of the problem assumes optimal use of 

installed capacity. In fact, between hours t(kb) and T, demand is met by baseload plants, 

since installed capacity renders this feasible and it is cheaper than using peaking plants. 

Between hours 0 and t(kb), peaking plants generate the residual demand that baseload 

plants cannot supply (see Figure 1). Thus t(kb) shows the number of hours during which 

consumers pay a higher energy price. Denoting by λ the Lagrange Multiplier of the 

capacity constraint, the Kuhn-Tucker conditions for the optimization problem as stated 

above are: 

                                                           
1 This excludes hydroelectric plants which are limited by the amount of water accumulated in the reservoir.  
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where ∆f = fb - fp  and ∆c = cp - cb, with both ∆c and ∆f positive, given the assumptions.  

Since the objective function is convex, the Kuhn Tucker conditions are necessary and 

sufficient for optimality. Hence assuming that both types of plants are installed in the 

optimal solution, the optimal baseload capacity *
bk satisfies the condition cfkt b ∆∆= /)( * . If  

Tcf >∆∆ /  then only peaking plants are installed in the optimal solution and 0* =bk . If *t  

represents the time for which peaking plants operate in the optimal solution, i.e.  )( **
bktt = ,  

then: 
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= T
c
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As is well known, peak-load pricing, which consists of an energy charge equal to the 

marginal operating cost of the most expensive plant in operation plus a peak consumption 

capacity charge equal to the per-unit investment cost of peaking plants, leads a 

decentralized system with these characteristics to the optimal solution. 



 6

 

2.2 Monopoly solution  

 

We now assume that energy is supplied by a single genco.2 Given that peak-load 

pricing is used to set prices, the monopolist’s profit when the baseload capacity is kb, is 

given by: 

bbbb fkktckk ∆−∆= )()(π        (4) 

 

Then 0)0(' >∆−∆= fcTπ  and, recalling (3), 0)(')(' *** <∆= cktkk bbbπ . Since we assumed 

function t to be continuously differentiable, it follows that function π′ is continuous. 

Consequently there is at least one ),0( *
b

m
b kk ∈  satisfying the condition 0)(' =m

bkπ . To 

simplify the analysis we also assume that π is strictly concave,3 in which case there is only 

one solution that maximizes the monopolist’s profit. This involves a larger share of 

peaking technology than the competitive solution (see Figure 1).  

 

Despite both services (energy and power) being priced at marginal cost, the monopolist 

exercises market power by distorting the composition of the generation portfolio, thereby 

obtaining rents equal to 0)( * >−∆ ttkc mm
b , where tm denotes the number of hours in which 

peaking plants operating in the monopoly solution, i.e. )( m
b

m ktt = . This strategy results in 

consumers paying the higher energy price for a longer period of time (tm instead of t*) and 

hence a smaller consumer surplus. Producer rents do not compensate for the reduction in 

                                                           
2 Alternatively, it may be assumed that there is a baseload technology monopoly, but a competitive bid with 

peaking technology.  
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consumer surplus, so society as a whole is worse off. The change in social welfare is given 

by:  

 

∫ −∆−=∆
t

t
dttqtqcW

ˆ

*
))ˆ()((  <  0       (6) 

 

3.  Market Equilibrium with Transmission 

 

We now extend the model to analyze the interconnection of two initially isolated 

markets (A and B). To focus exclusively on the competition effect, we assume that both 

markets have the same load curve q(t) and that a monopolist supplies each one. A 

transmission line is built connecting the two markets, with sufficient capacity to ensure that 

the line suffers no congestion. We further assume that gencos do not have to pay to use the 

transmission line and that there are no transmission losses (these assumptions are justified 

later). This is equivalent to a single market in which the two gencos compete. 

 

 We assume Cournot-type behavior, in which each generating company maximizes 

its profit by taking its rival’s installed baseload capacity as given. Note that the peaking 

technology capacity to be installed is not relevant to agents’ decisions since peaking 

technology plants always break even. Given the symmetry of the problem, we can assume 

that each producer sells half of its production in each market, so the producer located in 

market j solves the following problem:  

                                                                                                                                                                                 
3 The profit function is strictly concave if and only if .0)('')('2 <+ bbb ktkkt  



 8

ljBAljkfkktkcMax j
b

l
b

j
bj

b
k j

b

≠=








∆−






 +
∆ ,,,

2
   (7) 

 

where j
bk  denotes its choice of installed baseload technology capacity. The first-order 

condition is: 
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The concavity of function π ensures that the objective function of the minimization problem 

(7) is concave, and hence has a unique Cournot solution j
bk . We define c

bk  as each market’s 

baseload installed capacity in the Cournot equilibrium. By symmetry, B
b

A
b

c
b kkk == . Hence 

the market equilibrium condition is:  
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In addition m
b

c
b kk >  and tc < tm where  )( c

b
c ktt = . As a result of interconnection of the two 

systems and the ensuing Cournot competition, the baseload installed capacity chosen by 

producers lies between the monopoly and optimal solutions. Hence the competition 

engendered by the transmission line reduces the local market power that was exercised by 

each genco before interconnection. Consumers in each locality benefit because their total 

energy expenditure decreases by   

 



 9

∫∆
m

c

t

t

dttqc )( .                 (10) 

 

Interconnection reduces each genco’s rents by: 
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Thus the pro-competition effect of the transmission system changes social welfare by 
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Construction of the transmission line will be socially profitable if and only if the social 

benefit exceeds the cost of building and operating the line. Note also that, since 

c
b

B
b

A
b kkk == , the line does not actually carry energy from one market to another; the 

transmission line thus reduces the market power of local monopolies without being used. 

This would make our assumption that gencos do not pay for the transmission line seem 

reasonable, for it would be unrealistic to expect them to finance a line that (a) they do not 

use and (b) reduces their profits. The foregoing results can be easily extended to a Cournot 

oligopoly with n firms operating in each demand center.  
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4. The minimum transmission capacity for market integration 

 

The fact that the transmission line remains unused does not mean that any level of 

transmission capacity will suffice to produce the pro-competitive effect. Indeed, our 

analysis assumed that the line remained uncongested. We adapt the Borenstein et al (2000) 

methodology to estimate the smallest capacity Kℓ that the line must have to force gencos to 

behave as if both markets were fully integrated. The minimum capacity Kℓ is such that the 

profit obtained by a local monopoly when it passively accepts imports from the other (i.e. 

it does not attempt to export energy itself), is equal to the profit obtained in the Cournot 

solution. The problem faced by the genco when it behaves as a monopolist in the residual 

local market is: 

 

{ }bbbk
fkKktckMax

b
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where K > 0 is the capacity of the transmission line. The optimal solution bk (K) therefore 

satisfies: 

 

( ))())(('))(( * KkKKkttKKkt bbb +−=+           (14) 

 

 

It follows from equation (14) that if 2/c
bkK = , then the residual monopolist’s solution is 

2/)2/( c
b

c
bb kkk = . In this case the baseload capacity that supplies the local market is the 

same as in the Cournot solution, and consequently ( ) .2/)2/( cc
b

c
bb tkkkt =+  Note that the 
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firm located in the other market is willing to supply this baseload capacity as the high 

energy price will last for ct hours. Hence if 2/c
bkK =  and the local monopolist behaves as 

a residual monopolist, it obtains half the profits that it would obtain in the Cournot 

integrated solution as it chooses not to participate in the other market. In contrast, K=0 

results in the unrestricted monopoly solution.   

 

Since π(K) is a decreasing function of K, 2/c
bk  is an upper bound for Kℓ.  Thus Kℓ is in the 

range (0, 2/c
bk ). Imposing a more stringent condition, such that 0)(')('' ≤+ bbb ktktk , 

ensures that 0/)(1 ≤∂∂≤− KKkb , which in turn implies that m
bb

c
b kKKkk >+> ll )(  and 

tc < t(kb(Kℓ)+Kℓ) < tm. Thus when the transmission capacity is Kℓ and the local firm 

behaves as a residual monopolist, the peaking technology will operate for a length of time 

longer than tc. This ensures that the genco located in the other market will install baseload 

plants to export energy.  

 

Even though the share of baseload technology in the local generating portfolio decreases 

with imports (kb decreases with K), total baseload capacity serving the local market is 

larger than in the monopoly solution (kb+K increases with K). As a result, the efficiency 

loss in the local market is smaller than in the unrestricted monopoly solution because the 

aggregate share of baseload technology is larger once energy imports are included.  

 

When the transmission capacity K satisfies 0<K<Kℓ, the local genco behaves like a 

residual monopolist. Previous results ensure that m
bb kKKk >+)( and t(kb(K)+K) <  tm . 
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Hence, in this situation the efficiency loss in the residual monopolist’s market is smaller 

than in the unrestricted monopoly solution.  

  

5. Final comments 

The transmission system plays a pro-competition role in the power industry by 

restraining the market power that producers can exert in their local markets. Our analysis 

shows that the results reported in the literature regarding the role of the transmission 

system in enhancing competition in the generating sector are not exclusive to deregulated 

power industries. They are also valid when producers are forced to exert market power 

through the composition of their generating portfolios—the only variable they can freely 

control in a situation of mandatory merit-order dispatching and peak-load pricing. In both 

regulatory settings, the pro-competition effect of the transmission line depends on its 

capacity.   
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Figure 1 

Composition of the Generation Portfolio : 

Optimal and Monopoly Solution. 
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Mathematical Appendix 

The optimization problem solved by the independent system operator can be formalized as 

follows:  
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Denoting by λ the Lagrange Multiplier of the capacity constraint and assuming that the 

optimal solution includes both types of plants, the Kuhn-Tucker conditions become: 
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Hence the optimal baseload capacity *
bk satisfies the condition cfkt b ∆∆= /)( * . However if  

Tcf >∆∆ / , then the optimal generation portfolio cannot include baseload plants. In this 

case the optimal solution is M
p qk =*  and 0* =bk . It is easy to verify that this condition 

satisfies the Kuhn Tucker conditions; and it also can be shown that the solutions 0* =pk  

and M
b qk =*  do not. So, denoting the time that the peaking plants operate in the optimal 

solution by )( **
bktt =  gives: 

 

 






∆
∆

= T
c
fMint ,*         (3) 

 

In what follows, we make the simplifying assumption that the optimal solution includes 

baseload plants, so cft ∆∆= /* .  
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The monopolist’s profit when its baseload capacity is kb is given by: 

bbbb fkktckk ∆−∆= )()(π        (4) 

Thus 

 ctktktkfcktktkk bbbbbbb ∆−+=∆−∆+= ))()('())()('()(' *π   (4.a) 

and 

 cktkktk bbbb ∆+= ))('')('2()(''π       (4.b) 

 

The profit function is therefore concave if and only if .0)('')('2 ≤+ bbb ktkkt   

 

When the two initially isolated symmetric markets (A and B) are interconnected, the 

producer located in market j maximizes its profits ),( l
b

j
bj kkπ  by choosing its baseload 

capacity j
bk , taking its rival’s capacity l

bk  as given.  The optimization problem is therefore:  
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The first order condition of the objective function is  
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and the second derivative is: 
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The concavity of function π implies that the objective function of the maximization 

problem (7) is also concave. Therefore, there is one and only one solution j
bk  to that 

optimization problem, given by equation (8). 
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Finally we analyze how the monopolist’s choice of bk  changes with the capacity of the 

transmission line (K). In this case, the monopolist in the residual local market chooses 

)(Kkb  such that:  
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The implicit derivative of (14) results in:    
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The concavity of function π guarantees that the left hand bracket is negative, so 
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We assume 0)('')(' ≤+ bbb ktkkt , which ensures that the right hand bracket is negative.4 

Therefore, 0/1 ≤∂∂≤− Kkb ; a rise in K  reduces bk  but by a smaller amount. 

  

 

                                                           
4 Note that this assumption implies concavity of the profit function. 


