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Abstract

Copula modeling has become an increasingly popular tool in finance to model
assets returns dependency. In essence, opulas enable us to extract the dependence
gructure from the joint distribution function of a set of random variables and, at the same
time, to separate the dependence structure from the univariate marginal behavior. In this
study, based on U.S. stock data, we illustrate how tail-dependency tests may be
misleading as atool to select a copulathat closely mimics the dependency structure of the
data. This problem becomes more severe when the datais scaled by conditional volatility
and/or filtered out for serial correlation. The discussion is complemented, under more
general settings, with Monte Carlo simulations.
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1 Introduction

Modeling the dependence structure of assets returns has become an active line of
research in finance in research years. In particular, extreme value theory has been applied
to model tail dependency. Two recent articles in this area are Poon, Rockinger, and Tawn
(2003, 2004). Poon et al. conclude that extreme-value dependence is usually stronger in
bearish (left tails) than in bullish markets (right tails), and that some of this dependency
can be explained by correlated conditional volatilities.

A more genera methodology, which enables us to study not only the tail behavior but
the whole structure of dependency of a &t of random variables, is mpula modding.
Specifically, copulas are uniform distributions, which make it possible to extract the
dependence structure from the joint probability distribution function of a set of random
variables and, simultaneously, to separate the dependence structure from the univariate
marginal behavior. Examples of recent applications of copulas in finance are Cherubini
and Luciano (2002, 2003a, b), Embrechts, Lindskog and McNeil (2003), Giesecke
(2004), Junker, Szimayer, and Wagner (2005), Pachenko (2005), and Rosenberg and
Schuermann (2006). The textbook by Cherubini, Luciano, and Vecchiato (2004) provides
a complete discussion onthe use of copulas in finance.

In this article, we illustrate how tail-dependency tests may be misleading as a
guidance to choose a suitable copula to the data. This can be specialy the case when the
data is scaled by volatility and/or filtered out for serial correlation. The discussion is
illustrated under different scenarios by means of Monte Carlo simulations.

This article is organized as follows. Section 2 presents background material on

tail-dependency tests and copulas. Section 3 concentrates on an application of copula



selection to daily data (June 1992-June 2006) of four U.S. stock indices elaborated by
Morgan Stanley, namely, U.S. Investable Market Vaue, U.S. Large Cap 300, U.S. Mid
Cap 450, and U.S. Small Cap 1750. By means of Monte Carlo ssimulatiors, we look into
the issue of how well tail-dependency tests do as a guidance to choose a suitable copula.
Section 4 concludes.
2 M ethodological issues
2.1  Tail-dependency tests
2.1.1. Asymptotic dependence and asymptotic independence

Focusing exclusively on the probability distribution of the maximum or the
minimum of a sample is inefficient if other data on extreme values are available.
Therefore, an alternative approach consists of modeling the behavior of extreme values
above a high threshold (*Peaks over threshold” or POT). The excess distribution, above a

threshold u, is given by the conditional probability distribution

= Pr(X - _ Ry +u)- F)
R =P Uy X > ) == sy >0,
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Under some regularity conditions, there exists a positive function b (u), for alarge

enough u, such that (1) is well approximated by the generalized Pareto distribution

(GPD):
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where b(u)>0, and y? 0 when z2 0, and OEy£E- b(u)/z when z<O0 (see, for example, Coles,
2001, or Embrechts, Klupperberg and Mikosch, 1997). If z>0, F is said to be in the
Fréchet family and H;n@ is a Pareto distribution. In most applications of risk
management, the data comes from a heavy-tailed distribution, so that z>0.

Poon, Rockinger, and Tawn (2003, 2004) introduce a special case of threshold
modeling connected with the generalized Pareto distribution, for the Fréchet family. For
this particular case, the tail of a random variable Z above a (high) threshold u can be
approximated as
1- F(2)=Pr(Z>2) ~z""L(2), for z>u

3
where L(z) is a lowly varying function of z,2 and h>0. If L(2) is treated as a constant for
al z>u, such that L(z)=c, ard under the assumption of n independent observations, the

maximum-likelihood estimators of h and c are

1o, a&,0 ~ N
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where 74),..., Z, ,, ae the n, observations above the threshold u, and h is known as the

Hill estimator.

In order to study dependency of paired returns, Poon et al. suggest transforming
the original variables to a common marginal distribution. If (X,Y) are bivariate returns
with corresponding cumulative distribution functions Fx and Fy, the following

transformation turns them into unit Fréchet marginals (S, T):

2 A function on L on (0, ¥) isslowly varying if limey L(t2)/L(z)=1 for t>0.



S=. 1 T=._ 1t S>0, T>0.
INF,(Y)

Under this transformation, Pr(S>s)=Pr(T>s)~s'. As both S and T are on a
common scale, the events { S>s} and {T>s}, for large values of s, correspond to equally
extreme events for each one. Given that Pr(S>s)® 0 as S® ¥, the focus of interest is the
conditional probability Pr(T>s|S>s), for large s. If (S, T) are perfectly dependent,
Pr(T>9gS>9)=1. By contrast, if (S, T) are exactly independent, Pr(T>gS>s)=Pr(T>s),
which tends to zero as ® ¥. Poon et a. define the following measure of asymptotic

dependence:

c =lim Pr(T>9S>s) Ofc£1.
® ¥

(6)

In particular, two random variables ae called asymptotically dependent if ¢>0,
and asymptotically independent if c=0.

Coles, Heffernan and Tawn (1999) point out that two random variables, which are
asymptotically independent (i.e, c¢=0), may show, however, different degrees of
dependence for finite levels of s. Therefore, they propose the following measure of

asymptotic independence:

-1<Cc€£1l.
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Vaues of ¢>0, ¢=0 and c<0 are an approximate measure of positive
dependence, exact independence, and negative dependence in the tails, respectively. In
particular, ¢ resembles a correlation coefficient, and it is identica to the Pearson
correlation coefficient under normality.

Poon et d’s tail-dependence test is based on the €,c) par, which makes it
possible to characterize both the form and degree of extreme-value dependence. For
asymptotically dependent variables, ¢ =1 and the degree of dependence is measured by
c>0. For asymptotic independent variables, c=0 and the degree of dependence is
measured by cC.

The above tail-dependence test rests on the fact that
Pr(Z>2)=z*L(2) for z>u,

(8)
for some high threshold u, where Z=min(S,T). Equation (8) shows that z is the tail index
of the univariate random variable Z. Therefore, it can be computed by using the Hill
estimator, constrained to the interval (0, 1]. Under the assumption of independent

observations on Z, Poon et al. show that

9)
where T is asymptotically normal.

The null hypothesis of asymptotic dependence (i.e, c=1) is rgected if

é+1.96\/Var(é) <1. In that case, we conclude that the two random variables are



asymptotically independent (i.e., c=0), and the degree of dependency is measured by c.
Otherwise, if the null hypothesis cannot be rejected, ¢ is estimated under the assumption

un un,(n-n,)

that ¢ =x=1,where ¢ = S
n

and Var(€) =

2.1.2 Threshold selection

In order to compute the Hill estimator of the tail index referred to above (z), one
has to choose an appropriate threshold (u). The simplest procedure is to plot the Hill
estimator on u, and find such u for which it stabilizes (see, for instance, Tsay, 2001,
chapter 7). In practice, however, in some cases such graphical procedure may not shed
much light on the optimal threshold to be selected. Consequently, forma methods to
choose u have been devised. A discussion on different adaptive-threshold selection can
be found in Matthys and Beirlant (2000).

The authors distinguish two approaches to estimating the optimal threshold u. One
consists of constructing an estimator for the asymptotic mean-squared error (AMSE) of
the Hill estimator, and choosing the threshold that minimizes it. This approach includes a
bootstrap method (e.g., Danielson, de Haan, Peng, and de Vries, 2001). The second
approach directly derives an estimator for u, based on the representation of the AMSE of
the Hill estimator. The exponential regression model¥s studied in detailed in Beirlant,
Diercks, Goegebeur, and Matthys (1999), and further discussed in Matthys and Beirlant
(2003)%4 fals into this class. Given that the exponential regression approach is both
straightforward and computationally fast, it is our choice to find the optimal threshold. 3

We next describe the steps involved in this procedure.

3 Matthys and Berlaint (2000) carry out simulation exercises under different distributional assumptions to
compare the adaptive-threshold selection methods they discuss. They find that the exponential-regression



Feuerverger and Hall (1999) and Beirlant et a (1999) derive an exponential

regr'on modéd for the Iogspaci ngs of upper statistics
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...fk) is a vector of

independent standard exponential random variables, and r £0 is areal constant.

If the threshold u is fixed at the (k+1)!" largest observation, the Hill estimator can

be rewritten as
1& .

Ho Té J109( X . 1) - 100( X, 1)) (12)
j=1

The Hill estimator so expressed is the maximum-likelihood estimator of g in the

reduced mode

JUog( X, sy - l0a( X, ;) ~ 0, 1£j£k

From the above, the AMSE of the Hill estimator is given by
(12)

2
AMSEH, , :gib; Z +% .

Therefore, the optimal threshold k™ is defined as the one that minimizes (12):
2 2 0

Reh . O
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The algorithm for the exponential regression goes as follows:

method performs quite well, and that it even outperforms the bootstrap method for moderate sample sizes

(e.g. 500).



In expression (10), fix r at ro=- 1 and calculate |least-squares estimates g, and
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The first step of the algorithm boils down to running a linear regression of

j(n+1)

jlog( X, 1) - log(X,.;,)) onaconstant term and (k1) ,foreachk1 {3...., n}.

2.2 Copulaanalysis
2.2.1 Basicideas

Copula function methodology has arisen as a new technique to measure the co-
movement between financial markets. Copulas are uniform distributions which enable us
to extract the dependence structure from the joint probability distribution function of a set
of random variables and, at the same time, to separate the dependence structure from the
univariate margina behavior. Examples of recent applications of copulas in finance are
Cherubini and Luciano (2002, 2003a, b), Embrechts, Lindskog and McNeil (2003),
Giesecke (2004), Junker, Szimayer, and Wagner (2005), Pachenko (2005), and
Rosenberg and Schuermann (2006). A thorough discussion of the use of copulas in
finance is provided in the textbook by Cherubini, Luciano, and Vecchiato (2004). In
addition, the survey article by Frees and Valdez (1998) provides an excellent background

onthe use of copulasin amore genera context.

4 Matthys and Beirlant (2000) point out that for many distributions the exponential-regression method
works better, in M SE-sensg, if the nuisance parameter r isfixed at somevaluer o rather than estimated.



A copulais defined as a multivariate distribution function (df) F of random variables
X1,..., Xn With standard uniform marginal cumulative distribution functions Fy,..., F,
(margins). That is, Xi~F;, i=1,..., n. Consequently, a copula satisfies the following
properties (see Matteis 2001, section 2):

) C(x1,..., Xn) isincreasing in each component X

ii) C@,...1x,1,...0)=x" i=1,..,n, %1 [0,1]

iy Fordl (au,..a), (bs,....bn) T [0,1]" with a£b,

2 2 S
a--aCn " C(xy,. %, )20

=1 =1
with x1=g and xo=b; " jT {1, ..., n}.
In generd, let us condder an n x 1 random vector X with a joint df F and
continuous margins F;, which are not necessarily standard uniform.® Then
F(x1,...,%) =Pr(X1£X1, ..., XnEXn)
=Pr(F1(X1)EF1(X), ..., Fa(Xn)EFn(Xa))
=C(F1(X),-., Fn(%n)) (14)
Equation (14) shows that the joint df F can be described by the margins F,.., F,
and the copula C. The latter captures the dependence structure among Xj,..., %,. The
existence of the function C is established by Sklar’s theorem (see Nelsen 1999, section
2.10). According to it, each multivariate distribution function with continuous margins
has a unique copula representation.® Conversely, if C is a copula and Fi,..., F, are

distribution functions, the function F given in (17) isajoint df with margins F4,.., Fn.

5 A well-known result in statistics establishes that if X; is a random variable with a continuous distribution
function F;, the random variable F(X;) is standard-uniformly distributed, i.e., F(X;)~U(0,1).
® | one or more margins exh ibit discontinuities, the copula representation is not unique.
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The density function of X, ..., X, in turn can be expressed in terms of the density

copula and the marginal densities:

f(x,,X X ):a[nc(Fl(Xl)'Fz(Xz)’ “ n(X ))OﬂF(Xl) 1F, (Xz) ﬂFn(xn)
1 X X é TFX)IR(X,).. IR (x,) & X, 1, ™,

=c(R(x1), R(X2).... (Xn))éfi(xi) (15)

If n=2, we have a bivariate copula, which isdefined on 1>=[0, 1] x [0, 1]:
F(x,y)=C(Fx(x), Fy(y))° C(u, v)=Pr(U£u, VEV)
where U=Fx(x) and V=Fy(y) are standard uniforms.

The joint density function of X and Y can be inturn expressed in terms of the

2
copuladensity, c(u,v) =

C(u,v), and the corresponding marginal densities of X and
\

Y according to equation (18). In this case, the empirical copula s given by’

~ad Jo_1g i
Ce—,—== a Tou suinveevin I, J=1,2..n (16)

where unEup)E.. £un) and vinEV)E...£Vn arethe order statistics.
Upper- and lower-tail dependence measures can be obtained as follows (see, for

instance, Cherubini et al., section 3.1.5):

. . 1- 29+C(q,
|, =lim g, P(U>q|V >g)=lim,, q1- q(q ) (174)

C(q,9)

|, =M oo PI(U <QIV <0) = lim 4, (17b)

3
In general, the empirical copula can be obtained by CEF1 A Ll o160 uaE i)t e B Gy 2

1£jEm, §=1,2..,n.
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C is said to have upper-tail dependence if and only if 2,1 (0, 1], and no upper-tail
dependence if and only if 2,=0. Similarly, C is said to have lower-tail dependence if and
only if 2T (0, 1], and no lower-tail dependence if and only if 2,=0.

It is worth noticing that the coefficient ¢ in expression (6) can be generalized to

c=Ilm ., P(U>q|V >q)
where U and V are the transformation of (X, Y) to uniform margins (see Coles,
Heffernan, and Twan 1999). Therefore, under such transformation, ¢ coincideswith | .

One of the most frequently used copulas in the finance field is the Gaussian one.

For the bivariate case, the Gaussian copula boils down to

Fl(u Fi(v) 2 2

oS - +y°0

Cuv) = gk ly—~ X- 2y +y 9
¥

o a5 PR (8

where F ; isthejoint df with correlation coefficient r .
One characteristic of the Gaussian copula is that it does not exhibit either lower-
or upper-tail dependence unlessr =1. That isto say,

| o= _10 iff r <1
VT iff r =1

However, assets returns may present extreme-vaue dependency in both tails®

Therefore, recent studies have focused on the Student’s t-copula (e.g., Demarta and

McNeil 2005; Mashal, Naldi, and Zeevi 2003). The bivariate t-copulais defined as

u+2

t )t (v) 2 5 T
N \ 1 X" - 2‘XY'"y 0 2 -1 -1
Cuv)= X ¢py §t+ 27 =t (AU V)
91 gj 2py1- 12 u@-r?) g ’

(19)

8 The Gumbel and Clayton copulas only allow for upper and lower tail dependence, respectively.
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u+l
2

"G+ /28, 270
Ofoa G(u/z)g U g

2.2.2 Maximum likelihood estimation of a bivariate t-copula

where t, (X) =

The Student’s t copula density is given by (see, for instance, Cherubini, Luciano,

and Vecchiato 2004, section 3.2.2)

-(u+2)/2

w+20 wo§+ kf+k2 2rklk2
1 G:— - =
> & 2 gé2g uld-r?) g
c  (uv)=r? 2 (U2)2 (20)
ae1+19 2 & k?g
Gg 2 g Od+=
=1 Ug

where k, =t;*(u) and k, =t;'(v).
For a sample of n independent observations, estimates of r and u can be obtained

by maximizing the log likelihood function of the sample:

logL = & log( &, s (U1, Vi) (21)

21
Given that both k,; =t;*(u;) and k,; = t;'(v;), i=1,..,n, depend on the unknown

parameter u, we conduct a grid search over u and maximize log L with respect to r, for

every fixed value of u. We choose the paired combination that maximizes log L.°

2.2.3 Generation of random samples from Gaussianand t-Student copulas

A random sample from a Gaussian copula can be generated as follows (see Wang

1999 or Cherubini et al. 2004, section 6.1, for instance). Let (X1,.., X,) be a set of

correlated random variables with margins F, ..., F, and Kendall's tau tjj=t(X;,X;) or

° Our SPlus code draws from that developed by Dean Fantazzini in GAUSS, which is freely available at
http://economia.unipv.it/pagp/pagine personali/dean/programs/t_copula simul_est new.
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Spearman’s rank correlation RankCorr(Xi,X,-).10 If the dependence structure can be
adequately described by a normal copula, then the following algorithm can be used:
Step 1: Convert the given Kendall’s tau or rank correlation coefficient to the pair-wise

correlation coefficient used for normal random variables;

8%,8: 2dn
e2 g

P

r; =9n QERankCorr(xi,xj)g
e 2

and construct the lower triangular matrix B, such that S=BB¢ (i.e., Cholesky
decomposition of S),where S isthe matrix of correlation coefficients as computed above.
Step 2: Generate an n x 1 vector y of standard normal variables
Step 3: Let =By and set u=F (z), i=1,,,, n.
Step 4: Set x; =F'(u;), i=1,., n.

Similarly, a sample of random variables, whose dependency can be modeled by a

t-copula, can be generated as follows:

Steps 1 and 2: the same as above

Step 3: Simulate a random variable z from a ¢?, independent of y

Step 4. Set z=By

Step5: w =./u/zz

Step 6: Set u; =t (w;),i=1, 2, .., n wheret,(.) is the univariate t-distribution function.

Step 7: Set x, =F; ' (u;), i=L,.., n.

19 For the random variables X and Y, with continuous cdf F, Kendall’s tau is defined as t=Pr{ (Xi=Xj)(Yi—
Y))>0}—Pr{(Xi—-Xj)(Yi-Yj)<C}. If C is the copula associated with F, it holds that

t= 4@‘53(u,v)c(u, v)dudv - 1. In turn, Spearman’s rank correlation coefficient is defined as the Pearson
|2

correlation coefficient between Fx(X) and F/(Y), where Fx and F, are the margins of X and Y,

respectively. It holds that RankCorr(X,Y)= 12 qp>(u, v)dudv - 3.

12
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In order to model the margins F, , i=1,.n, we resort to a semi-parametric

procedure discussed by Carmona (2004). Specifically, the tails of the distribution can be
modeled by means of the generalized Pareto distribution, while the empirical distribution
can be used to model the center of the distribution. That is, parametric and non
parametric approaches are used to model the tails and the center of the distribution,
respectively.
3 Data and estimation results

Our data set comprises the following Morgan Stanley Capital Investment (MSCI)
indices. U.S. Investable Market Value, U.S. Large Cap 300, U.S. Mid Cap 450, and U.S.
Small Cap 1750. The data is measured at a daily frequency and covers 15 years. June
1992-June 2006. Some descriptive statistics are presented in Table 1. As previously
found in other studies, returns exhibit excess kurtosis and negative skewness. All returns
series are comparably volatile, as measured by their standard deviation and interquartile
range.

Figure 1, panels (a) and (b) presents estimates of the tail index parameter of paired

returns for large/mid cap and investable market value/small cap, based on empirical

1- 2q1+ A9D g 7', =lim o, LED where the
-q q

copulas. Specifically, |, =lim .,

empirical copula is computed according to equation (16). For the large/mid cap pair, the
estimates of upper and lower tail dependence are around 0.64-0.68 and 0.68-0.71,
respectively, as shown in Panel (a) of Figure 1 The estimated tail dependency index
parameters for the investable market value/small cap are by contrast sightly smaller:

around 0.43-0.44 in the upper tail and 0.52-0.55 in the lower tail.
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Table 2 reports the computation of Poon et a. “s tail dependency test for both
pars. As we see in Panel (a), extreme-vaue dependency is not rgjected for the large/mid
cap pair in either tail, whereas for the investable market vaelue/small cap, extreme-value
dependency is accepted at the 5 percent significance level in the bwer tail, but it is
rejected in the upper tail at the 1 percent significance level. For the large/mid cap pair, the
estimated tail index parameters are 0.69 and 0.67 in the lower and upper tails,
respectively. These are fairly close to those reported above.

As shown in Pand (b) of Table 2, filtering the returns data by an AR(1)-
GARCH(1,1) model leads to regjecting upper tail dependency in both paired returns series.
The null hypothesis of lower tail dependency continues to be accepted for the large/mid
cap pair, whereas it is now rejected at alower significance level for the investable market
value/small cap (i.e., 2 percent level).

Our next step consists of fitting a suitable copula to the data, based on the
dependency tests just reported. We first focus on the raw data and then on the filtered
data. Figure 2 shows the result of fitting normal and t-Student’s copulas to the investable
market value/small cap pars. As a benchmark, the empirical copula is plotted along with
each parametric model. As previously discussed, Poon et al.’s test suggests that there is
tail independence inthis pair. Therefore, a normal copula should be an appropriate choice
(right-hand side panel of Figure 2. However, at copula appears to be a better fit as it
captures nore accurately the dependence structure in the lower tail and in the center of
the bivariate distribution (The degrees of freedom and correlation coefficient are

computed by the method of maximum likelihood, which was previously discussed).
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Indeed, based on the Akaike, Schwarz, and Hannan-Quinn information criteria, the t
copula outperforms the normal copula.

We follow a similar procedure for the large/mid cap pair. Given that in this case,
Poon et a.’s test does not reject lower and upper tail dependency, our choice is a t
copula. As a matter of comparison, we also fit a normal copula. As before, we conclude,
based on the above three information criteria, that at copula gives a better fit.

Further evidence on the goodness of fit of the t copula is provided by Figure 3,
which depicts QQ-plots of actua and smulated returns for the four indices. In generd,
we see that the simulated data resembles the actual returns to a great extent.

As discussed earlier, after filtering the raw data, lower and upper tail dependency
is rgected for the investable market value/small cap at the 5 percent level. Figure 4 shows
that indeed the estimates of the tail index parameters for this pair are smaller than in the
raw data, particularly so for the upper tail. Therefore, a normal copula should be in
principle suitable to this filtered pair. Poon et. al.’s test suggests in turn that the large/mid
cap pair only exhibits lower-tail dependency. Based on this fact, we fit a Clayton copula
to the data, which alows for lower-tail dependency, and also a t-copula. Our estimation
results show that for the latter pair, a t copula, with 6 degrees of freedom and a
correlation coefficient of 0.9, mimics the dependency pattern of the data more closely
than a Clayton copula. For the former pair, the normal copula appears o be the right
choice.

In sum, for the large/mid cap pair, filtering does not reduce tail dependency
considerably and at copula continues to provide the best fit. The impact of filtering on

tall dependency only trandates into a greater estimate of the number of degrees of
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freedom of the t copula.* For the second pair, however, filtering has an impact on our
choice of a suitable copula. In particular, filtering washes away tail dependency, and at
copula becomes unsuitable. In the former case, Poon et al.’s test incorrectly suggests to
pick a Clayton copula after filtering, whereas in the latter case it provides a proper
guidance.

From our above results, it appears that Poon et al. test is biased towards rejecting
the null hypothesis of tail dependency. In order to look into this issue, we carry out three
Monte Carlo experiments, which are reported in Table 3. The first one consists of
generating two returns series of 1,000 observations each from GARCH(1,1) models and
assuming that the joint behavior of the two series is adequately modeled by a t copula
That is, by construction, our returns series exhibit dependency in both tails and the null
hypothesis holds. The two other exercises consists of taking normal copulas with a
moderate r (=0.5) and a relatively high correlation coefficient (=0.8). In these two cases,
by construction, the null hypothesis is false.'? Each experiment is repeated 100 hundred
times and at each iteration Poon et a’s test is computed for the lower and upper tail.

Panel (a) shows that Poon et al.’s test exhibits a severe size distortion. For
instance, at the nomina size (i.e., significance level) of 1 percent, we regject the null
hypothesis 58 and 55 percent of the time in the upper and lower tail, respectively. That is,
the actual confidence level in each case is 42 and 45 percent, respectively, instead of 99
percent. Panels (b) and (c) illustrate the ability of the test to reject afalse null hypothesis.

For a small correlation coefficient of the normal copula, the power of the test approaches

1 \When the number of degrees of freedom is large enough, the t copulawill approximate a normal copula,
which does not display tail dependency unless the correlation coefficient equals 1.
12 The normal copulaonly exhibits tail dependency whenr =1, in which case | =l ,=1.
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1. That is, the false null hypothesis is virtually aways rejected. However, the power of
the test decreases to a great extent for a higher correlation coefficient. For instance, when
r =0.8, the power of the test is only 33 and 28 percent in the lower and upper tail,
respectively, for asignificance level of 1 percent.

Based on our findings, we corclude that copulas offer a reliable methodology to
find a suitable functional form that describes accurately the dependence pattern of
financial returns. By contrast, Poon et a’s tail dependency test may be misleading asit is
biased towards rejecting the null hypothesis of asymptotic dependence.

4 Conclusions

We discuss the choice of an optimal copula function of paired returns aimed at
adequately capturing the co- movement between the two financia series. Our application
focuses on daily data of four Morgan Stanley U.S. stock indices. U.S. Investable Market
Vaue, U.S. Large Cap 300, U.S. Mid Cap 450, and U.S. Small Cap 1750, for the sample
period June 1992-June 2006. Our estimation results show that a t-Student’ s copula, which
allows for lower- and upper-tail dependency, works well in general, and that, filtering
returns may have an impact on the choice of the most suitable copula.

We aso computed Poon et al.’s dependency test to complement our analysis, and
found that this can be sometimes misleading as a guidance to select a suitable copula. We
further discussed his issue by means of Monte Carlo simulations, which showed that
Poon et. a’stest may exhibit size distortions and low power.

References
Beirlant, Jan, Goedele Dierckx, Yuri Goegebeur, and Gunther Matthys (1999), “Tail

index estimation and an exponential regression model”, Extremes 2: 177-200.



19

Carmona, R., 2004, Statistical Analysis of Financial Datain Splus. Springer-Verlag, New

York.

Cherubini, U., and E. Luciano (2002) “Bivariate option pricing with copulas.” Applied
Mathematical Finance 9(2), 69-85.

(2003a). “Pricing and hedging credit derivatives with

copulas.” Economic Notes 32(2), 219-242.

(2003b). “Pricing vulnerable options with copulas.”

Journal of Risk Finance 5(1), 27-39.

Cherubini, U., E. Luciano, and W. Vecchiato (2004). Copula methods in finance. Wiley.
Coles, Stuart, Janet Heffernan, and Jonathan Tawn (1999), “Dependence measures for
extreme value analyses.” Extremes 2: 339-365.

Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values. Springer
seriesin statistics, Springer-Verlag London Limited.

De Matteis, R. (2001). Fitting copulas to data. Diploma thesis, Institute of Mathematics

of the University of Zurich. www.creditriskresource.com/papers/paper 53.pdf.

Embrechts P, Klippelberg, C. and Mikosch, T. (1997), Modelling Extrema Events for
Insurance and Finance. Springer-Verlag Berlin Heidelberg.

Embrechts, P., F. Lindskog, and A. McNeil (2003). “Modeling dependence with copulas
and applications to risk management.” Handbook of Heavy Tailed Distribution in
Finance, S.T. Rachev, editor, chapter 8, 331-384. JAl Press. Handbooks in Finance,
Volume 1.

Frees, E., and E. Vadez (1998). “Understanding relationships using copulas.” North

American Actuaria Journal 2(1), 1-25.



20

Giesecke, K. (2004). “Correlated default with incomplete information.” Journal of
Banking & Finance 28(7), 1521-1545.

Junker, M., A. Szimayer, and N. Wagner (2005). “Nonlinear term structure dependence:
Copula functions, empirics, and risk implications.” Journal of Banking & Finance, In
Press.

Mashal, R., M. Naldi, and A. Zeevi (2003). "Comparing the dependence structure o
equity and asset returns’ Risk 16, 82-87.

Matthys, Gunther, and Jan Beirlant (2000), “ Adaptive threshold selection in tail index
estimation”, mimeo, Center for Statistics at the Catholic University Leuven.

Matthys, Gunther, and Jan Beirlant (2003), “ Estimating the extreme value index and high
guantile with exponential regression models’, Satistica Snica 13: 853-880.

Nelsen, R. (1999). An introduction to copulas. Lecture Notes in Statistics 139. Springer-
Verlag New York, Inc.

Pachenko, V. (2005). “Goodness-of-fit test of copulas.” PhysicaA 355, 176-182.

Poon, S., M. Rockinger, and J. Tawn (2003), “Modeling extreme-value dependence in
international stock markets’, Statistica Sinica 13: 929-953.

Poon, S., M. Rockinger, and J. Tawn (2004), “Extreme value dependence in financial
markets. Diagnostics, models, and financial implications’, Review of Financia Studies
17: 581-610.

Wang, S. (1999). “Understanding relationships using copulas, Edward Frees and

Emiliano Valdez, January 1998.” North American Actuarial Journa 3(1), 137-141.



Tables

21

Table1 Descriptive statistics of MSCI U.S. returns: June 1992-June 2006

U.S. Investable U.S.Large U.S. Mid U.S. Small
Statistic Market value Cap 300 Cap 450 Cap 1750

Minimum - 0.060 -0.072 -0.083 -0.063

Maximum 0.009 0.010 0.010 0.010

1Q -0.004 -0.005 -0.004 -0.005

3¢ Q 0.005 0.005 0.006 0.006

Mean 0.000 0.000 0.000 0.000

Std. Dev 0.051 0.057 0.055 0.050

Skewness -0.183 -0.080 -0.302 -0.272

Kurtosis—3 3.974 4.324 4.458 2.994

Observations 3,674 3,674 3,674 3,674

Notes: Log-returnsare daily
Table 2 Extreme-val ue dependency test
(a) Raw data
Lowertail Upper tail
Paired return r k* c se ttest p-vaue C se k- ¢ s.e ttest p-vaue C s.e
c=1 c=1
Large/midcap 091 191 092 014 -061 0.27 069 005 250 09 012 -031 038 067 004
Value/smallcap 081 299 083 011 -1.63 0.05 064 003 297 075 010 -248 001 059 003
(b) Filtered data

Large/midcap 090 221 095 013 -0.35 0.36 068 004 299 07/ 010 -229 001 068 004
Value/smallcap 080 231 076 012 -21 0.02 064 004 299 066 010 -35 0.00 055 0.03

Table3 Simulation of rejection rates of tail dependency test

Percentage rejection rate of Hy: tail dependence

(a) Data generating process. t Student’s copula (u=5, r =0.5)

1% significance level 5 % significance level

10 % significance level

Lower tail 53 82 86
Upper tail 55 80 0
(b) Data generating process: Normal copula (r =0.5)
1 % significance level 5 % significance level 10 % significance level
Lower tail 93 100 100
Upper tail 9% 100 100
(c) Data generating process: Normal copula (r =0.8)
1 % significance level 5 % significance level 10 % significance level
Lower tail 33 65 78
Upper tail 28 65 82

Notes: (1) Individual return series of 1,000 observations each are generated from GARCH(1,1) processes,

and marginal distribution functions are estimated according to Carmona (2004)'s semi-parametric

procedure. (2) Results are obtained from 100 simulations.
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t-Student’ s and normal copulasfitted to the Investable Market Value & Small CAP 1750

t-copula (v=4, rho=0.8) and empirical copula

pair

normal copula (rho=0.8) and empirical copula
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Figure3

simulated returns

simulated returns

0.04

0.02

-0.02

-0.04

-0.04 -0.02 0.0 0.02 0.04

-0.06

24

QQ-plot of actual and simulated returns based onat-copula
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Figure4 Tail index parameters computed from empirical copulas of filtered returns
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