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1 Introduction 
 
 Modeling the dependence structure of assets returns has become an active line of 

research in finance in research years. In particular, extreme value theory has been applied 

to model tail dependency. Two recent articles in this area are Poon, Rockinger, and Tawn 

(2003, 2004). Poon et al. conclude that extreme-value dependence is usually stronger in 

bearish (left tails) than in bullish markets (right tails), and that some of this dependency 

can be explained by correlated conditional volatilities.  

A more general methodology, which enables us to study not only the tail behavior but 

the whole structure of dependency of a set of random variables, is copula modeling.  

Specifically,  copulas are uniform distributions, which make it possible to extract the 

dependence structure from the joint probability distribution function of a set of random 

variables and, simultaneously, to separate the dependence structure from the univariate 

marginal behavior. Examples of recent applications of copulas in finance are Cherubini 

and Luciano (2002, 2003a, b), Embrechts, Lindskog and McNeil (2003), Giesecke 

(2004), Junker, Szimayer, and Wagner (2005), Pachenko (2005), and Rosenberg and 

Schuermann (2006). The textbook by Cherubini, Luciano, and Vecchiato (2004) provides 

a complete discussion on the use of copulas in finance.  

 In this article, we illustrate how tail-dependency tests may be misleading as a 

guidance to choose a suitable copula to the data. This can be specially the case when the 

data is scaled by volatility and/or filtered out for serial correlation. The discussion is 

illustrated under different scenarios by means of Monte Carlo simulations.  

 This article is organized as follows. Section 2 presents background material on 

tail-dependency tests and copulas. Section 3 concentrates on an application of copula 
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selection to daily data (June 1992-June 2006) of four U.S. stock indices elaborated by 

Morgan Stanley, namely, U.S. Investable Market Value, U.S. Large Cap 300, U.S. Mid 

Cap 450, and U.S. Small Cap 1750. By means of Monte Carlo simulations, we look into 

the issue of how well tail-dependency tests do as a guidance to choose a suitable copula. 

Section 4 concludes.  

2 Methodological issues 

2.1 Tail-dependency tests 

2.1.1. Asymptotic dependence and asymptotic independence 

 Focusing exclusively on the probability distribution of the maximum or the 

minimum of a sample is inefficient if other data on extreme values are available. 

Therefore, an alternative approach consists of modeling the behavior of extreme values 

above a high threshold (“Peaks over threshold” or POT). The excess distribution, above a 

threshold u, is given by the conditional probability distribution 
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 Under some regularity conditions, there exists a positive function β(u), for a large 
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where β(u)>0, and y≥0 when ζ≥0, and 0≤y≤−β(u)/ζ when ζ<0 (see, for example, Coles, 

2001, or Embrechts, Klüpperberg and Mikosch, 1997). If ζ>0, F is said to be in the 

Fréchet family and Hζ,β(u) is a Pareto distribution. In most applications of risk 

management, the data comes from a heavy-tailed distribution, so that ζ>0.  

 Poon, Rockinger, and Tawn (2003, 2004) introduce a special case of threshold 

modeling connected with the generalized Pareto distribution, for the Fréchet family. For 

this particular case, the tail of a random variable Z above a (high) threshold u can be 

approximated as 

)z(Lz~)zZPr()z(F1 /1 η−>=− ,   for z>u    

 (3) 

where L(z) is a slowly varying function of z, 2 and η>0. If L(z) is treated as a constant for 

all z>u, such that L(z)=c, and under the assumption of n independent observations, the 

maximum-likelihood estimators of η and c are 

∑
=









=η

un

1j

)j(

u u

z
log

n
1ˆ   η= ˆ/1u u

n
n
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where z(1),…, z )n( u
, are the nu observations above the threshold u, and η̂  is known as the 

Hill estimator. 

 In order to study dependency of paired returns, Poon et al. suggest transforming 

the original variables to a common marginal distribution. If (X,Y) are bivariate returns 

with corresponding cumulative distribution functions FX and FY, the following 

transformation turns them into unit Fréchet marginals (S, T):  

                                                 
2 A function on L on (0, ∞) is slowly varying if limz→∞ L(tz)/L(z)=1 for t>0.  
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)X(Fln
1
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 (5) 

 Under this transformation, Pr(S>s)=Pr(T>s)∼s−1. As both S and T are on a 

common scale, the events {S>s} and {T>s}, for large values of s, correspond to equally 

extreme events for each one. Given that Pr(S>s)→0 as s→∞, the focus of interest is the 

conditional probability Pr(T>s |S>s), for large s. If (S, T) are perfectly dependent, 

Pr(T>s|S>s)=1. By contrast, if (S, T) are exactly independent, Pr(T>s|S>s)=Pr(T>s), 

which tends to zero as s→∞. Poon et al. define the following measure of asymptotic 

dependence: 

)sSsTPr(lim
s

>>=χ
∞→

   0≤χ≤1 .    

 (6) 

 In particular, two random variables are called asymptotically dependent if χ>0, 

and asymptotically independent if χ=0.  

Coles, Heffernan and Tawn (1999) point out that two random variables, which are 

asymptotically independent (i.e., χ=0), may show, however, different degrees of 

dependence for finite levels of s. Therefore, they propose the following measure of 

asymptotic independence:  

1
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 Values of χ >0, χ =0 and χ <0 are an approximate measure of positive 

dependence, exact independence, and negative dependence in the tails, respectively. In 

particular, χ  resembles a correlation coefficient, and it is identical to the Pearson 

correlation coefficient under normality.  

 Poon et al’s tail-dependence test is based on the (χ, χ ) pair, which makes it 

possible to characterize both the form and degree of extreme-value dependence. For 

asymptotically dependent variables, χ =1 and the degree of dependence is measured by 

χ>0. For asymptotic independent variables, χ=0 and the degree of dependence is 

measured by χ .  

 The above tail-dependence test rests on the fact that 

Pr(Z>z)= z−1/ζ L(z)   for z>u,       

 (8) 

for some high threshold u, where Z=min(S,T). Equation (8) shows that ζ is the tail index 

of the univariate random variable Z. Therefore, it can be computed by using the Hill 

estimator, constrained to the interval (0, 1]. Under the assumption of independent 

observations on Z, Poon et al. show that 
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where χ̂  is asymptotically normal.  

 The null hypothesis of asymptotic dependence (i.e., 1=χ ) is rejected if 

1)ˆ(Var96.1ˆ <χ+χ . In that case, we conclude that the two random variables are 
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asymptotically independent (i.e., χ=0), and the degree of dependency is measured by χ . 

Otherwise, if the null hypothesis cannot be rejected, χ is estimated under the assumption 

that 1=ξ=χ , where 
n

unˆ u=χ  and 
3

uu

n
)nn(un

)ˆ(Var
−

=χ .  

2.1.2 Threshold selection 

In order to compute the Hill estimator of the tail index referred to above (ζ), one 

has to choose an appropriate threshold (u). The simplest procedure is to plot the Hill 

estimator on u, and find such u for which it stabilizes (see, for instance, Tsay, 2001, 

chapter 7). In practice, however, in some cases such graphical procedure may not shed 

much light on the optimal threshold to be selected. Consequently, formal methods to 

choose u have been devised. A discussion on different adaptive-threshold selection can 

be found in Matthys and Beirlant (2000).  

The authors distinguish two approaches to estimating the optimal threshold u. One 

consists of constructing an estimator for the asymptotic mean-squared error (AMSE) of 

the Hill estimator, and choosing the threshold that minimizes it. This approach includes a 

bootstrap method (e.g., Danielson, de Haan, Peng, and de Vries, 2001). The second 

approach directly derives an estimator for u, based on the representation of the AMSE of 

the Hill estimator. The exponential regression modelstudied in detailed in Beirlant, 

Diercks, Goegebeur, and Matthys (1999), and further discussed in Matthys and Beirlant 

(2003)falls into this class. Given that the exponential regression approach is both 

straightforward and computationally fast, it is our choice to find the optimal threshold. 3 

We next describe the steps involved in this procedure. 

                                                 
3 Matthys and Berlaint (2000) carry out simulation exercises under different distributional assumptions to 
compare the adaptive-threshold selection methods they discuss. They find that the exponential-regression 
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Feuerverger and Hall (1999) and Beirlant et al (1999) derive an exponential 

regression model for the log-spacings of upper statistics 

j(log(Xn−j+1,n)−log(Xn−j,n))∼ jk,n f
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bb k,n , 1≤k≤n−1, (f1, f2, …,fk) is a vector of 

independent standard exponential random variables, and ρ≤0 is a real constant.  

 If the threshold u is fixed at the (k+1)th largest observation, the Hill estimator can 

be rewritten as  
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 The Hill estimator so expressed is the maximum-likelihood estimator of γ in the 

reduced model 

 jn,jnn,1jn f~))Xlog()X(log(j γ− −+−   1≤j≤k. 

From the above, the AMSE of the Hill estimator is given by 

k1

b
HAMSE

22
k,n

n,k
γ

+







ρ−

=  .       (12) 

 Therefore, the optimal threshold opt
nk  is defined as the one that minimizes (12): 
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 The algorithm for the exponential regression goes as follows: 

                                                                                                                                                 
method performs quite well, and that it even outperforms the bootstrap method for moderate sample sizes 
(e.g. 500).  
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• In expression (10), fix ρ at ρ0=−1 and calculate least-squares estimates kγ̂  and 

k,nb̂  for each k ∈ {3,…, n}.  

• Determine 
k
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b̂

HAMSE
2
k

2

k

k,n
n,k

γ
+















ρ−
=  for k ∈ {3,…, n}, with 0k

ˆ ρ≡ρ . 4 

• Determine )HAMSE(minargk̂ n,k
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H .  

 The first step of the algorithm boils down to running a linear regression of 

))Xlog()X(log(j n,jnn,1jn −+− −  on a constant term and 
2)1k(
)1n(j

+
+

, for each k ∈ {3,…, n}. 

2.2 Copula analysis 

2.2.1 Basic ideas 

 Copula function methodology has arisen as a new technique to measure the co-

movement between financial markets. Copulas are uniform distributions which enable us 

to extract the dependence structure from the joint probability distribution function of a set 

of random variables and, at the same time, to separate the dependence structure from the 

univariate marginal behavior. Examples of recent applications of copulas in finance are 

Cherubini and Luciano (2002, 2003a, b), Embrechts, Lindskog and McNeil (2003), 

Giesecke (2004), Junker, Szimayer, and Wagner (2005), Pachenko (2005), and 

Rosenberg and Schuermann (2006). A thorough discussion of the use of copulas in 

finance is provided in the textbook by Cherubini, Luciano, and Vecchiato (2004). In 

addition, the survey article by Frees and Valdez (1998) provides an excellent  background  

on the use of copulas in a more general context.  

                                                 
4 Matthys and Beirlant (2000) point out that for many distributions the exponential-regression method 
works better, in MSE-sense, if the nuisance parameter ρ is fixed at some value ρ0 rather than estimated.  
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A copula is defined as a multivariate distribution function (df) F of random variables 

X1,..., Xn with standard uniform marginal cumulative distribution functions F1,..., Fn 

(margins). That is, Xi~Fi, i=1,..., n. Consequently, a copula satisfies the following 

properties (see Matteis 2001, section 2): 

i) C(x1,..., xn) is increasing in each component xi 

ii) C(1,..,1,xi,1,...,1)=xi ∀ i=1,...,n, xi∈[0,1] 

iii)  For all (a1,..,an), (b1,...,bn) ∈[0,1]n with ai≤bi 

0)x,...,x(C)1(...
n

1 n

n1
ni

2

1i

2

1i
i1

i...i ≥−∑ ∑
= =

++  

with xj1=aj and xj2=bj ∀ j ∈ {1, ..., n}.  

 In general, let us consider an n x 1 random vector X with a joint df F and 

continuous margins Fi, which are not necessarily standard uniform.5 Then 

 F(x1,...,xn) =Pr(X1≤x1, ..., Xn≤xn) 

   =Pr(F1(X1)≤F1(x1), ..., Fn(Xn)≤Fn(xn)) 

=C(F1(x1),..., Fn(xn))      (14) 

 Equation (14) shows that the joint df F can be described by the margins F1,.., Fn 

and the copula C. The latter captures the dependence structure among X1,..., Xn. The 

existence of the function C is established by Sklar´s theorem (see Nelsen 1999, section 

2.10). According to it, each multivariate distribution function with continuous margins 

has a unique copula representation. 6 Conversely, if C is a copula and F1,..., Fn are 

distribution functions, the function F given in (17) is a joint df with margins F1,.., Fn.  

                                                 
5 A well-known result in statistics establishes that if Xi is a random variable with a continuous distribution 
function Fi, the random variable Fi(Xi) is standard-uniformly distributed, i.e., Fi(Xi)~U(0,1).  
6 If one or more margins exh ibit discontinuities, the copula representation is not unique.  
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 The density function of X1, ..., Xn in turn can be expressed in terms of the density 

copula and the marginal densities: 

 
n

nn

2

22

1

11

nn2211

nn2211
n

n21 x
)x(F

....
x

)x(F
x

)x(F
)x(F)...x(F)x(F

))x(F),...,x(F),x(F(C
)x,...,x,x(f

∂
∂

∂
∂

∂
∂









∂∂∂

∂
=  

   = )x(f))x(F)...,x(F),x(F(c i

n

1i
inn2211 ∏

=

   (15) 

 If n=2, we have a bivariate copula, which is defined on I2=[0, 1] x [0, 1]:  

 F(x,y)=C(FX(x), FY(y))≡C(u, v)=Pr(U≤u, V≤v) 

where U=FX(x) and V=FY(y) are standard uniforms.  

 The joint density function of X and Y can be in turn expressed in terms of the 

copula density, )v,u(C
vu

)v,u(c
2

∂∂
∂

= , and the corresponding marginal densities of X and 

Y according to equation (18). In this case, the empirical copula is given by7 
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where u(1)≤u(2)≤...≤u(n) and v(1)≤v(2)≤...≤v(n) are the order statistics.  

Upper- and lower-tail dependence measures can be obtained as follows (see, for 

instance, Cherubini et al., section 3.1.5): 
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7 In general, the empirical copula can be obtained by ∑
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 C is said to have upper-tail dependence if and only if ?u ∈ (0, 1], and no upper-tail 

dependence if and only if ?u=0. Similarly, C is said to have lower-tail dependence if and 

only if ?l ∈ (0, 1], and no lower-tail dependence if and only if ?l=0.  

 It is worth noticing that the coefficient χ in expression (6) can be generalized to 

 )qV|qUPr(lim 1q >>=χ −→  

where U and V are the transformation of (X, Y) to uniform margins (see Coles, 

Heffernan, and Twan 1999). Therefore, under such transformation, χ coincides with λu.  

 One of the most frequently used copulas in the finance field is the Gaussian one. 

For the bivariate case, the Gaussian copula boils down to 
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where Φρ is the joint df with correlation coefficient ρ.  

 One characteristic of the Gaussian copula is that it does not exhibit either lower- 

or upper-tail dependence unless ρ=1. That is to say,  
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However, assets returns may present extreme-value dependency in both tails.8 

Therefore, recent studies have focused on the Student’s t-copula (e.g., Demarta and 

McNeil 2005; Mashal, Naldi, and Zeevi 2003). The bivariate t-copula is defined as 
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8 The Gumbel and Clayton copulas only allow for upper and lowe r tail dependence, respectively.  
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where ∫
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2.2.2 Maximum likelihood estimation of a bivariate t-copula 

The Student’s t copula density is given by (see, for instance, Cherubini, Luciano, 

and Vecchiato 2004, section 3.2.2)  
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where )u(t 1
1

−
υ=κ  and )v(t 1

2
−
υ=κ .  

 For a sample of n independent observations, estimates of ρ and υ can be obtained 

by maximizing the log- likelihood function of the sample:  

 ))v,u(clog(Llog ii

n

1i
,∑

=
υρ=        (21) 

Given that both )u(t i
1

i,1
−
υ=κ  and )v(t i

1
i,2

−
υ=κ , i=1,..,n, depend on the unknown 

parameter υ, we conduct a grid search over υ and maximize log L with respect to ρ, for 

every fixed value of υ. We choose the paired combination that maximizes log L.9 

2.2.3 Generation of random samples from Gaussian and t-Student copulas 

A random sample from a Gaussian copula can be generated as follows (see Wang 

1999 or Cherubini et al. 2004, section 6.1, for instance). Let (X1,.., Xn) be a set of 

correlated random variables with margins 
1XF ,..., 

nXF  and Kendall’s tau τij=τ(Xi,Xj) or 

                                                 
9 Our S-Plus code draws from that developed by Dean Fantazzini in GAUSS, which is freely available at 
http://economia.unipv.it/pagp/pagine_personali/dean/programs/t_copula_simul_est_new.  
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Spearman’s rank correlation RankCorr(Xi,Xj).10 If the dependence structure can be 

adequately described by a normal copula, then the following algorithm can be used: 

Step 1: Convert the given Kendall’s tau or rank correlation coefficient to the pair-wise 

correlation coefficient used for normal random variables: 

 





 π

=







τ
π

=ρ )X,X(RankCorr
6

sin2
2

sin jiijij  

and construct the lower triangular matrix B, such that Σ=BB′ (i.e., Cholesky 

decomposition of Σ),where Σ  is the matrix of correlation coefficients as computed above.  

Step 2: Generate an n x 1 vector y of standard normal variables 

Step 3: Let z=By and set ui=Φ(zi), i=1,,,, n.  

Step 4: Set )u(Fx i
1

Xi i

−= , i=1,.., n.  

 Similarly, a sample of random variables, whose dependency can be modeled by a 

t-copula, can be generated as follows: 

Steps 1 and 2: the same as above  

Step 3: Simulate a random variable ζ from a 2
υχ , independent of y 

Step 4: Set z=By 

Step 5: zw ζυ= /  

Step 6: Set )w(tu ii υ= , i=1, 2, .., n, where tυ(.) is the univariate t-distribution function. 

Step 7: Set )u(Fx i
1

Xi i

−= , i=1,.., n.  
                                                 
10 For the random variables X and Y, with continuous cdf F, Kendall’s tau is defined as τ=Pr{(Xi–Xj)(Yi–
Yj)>0}–Pr{(Xi–Xj)(Yi–Yj)<0}. If C is the copula associated with F, it holds that 

∫∫ −=τ
2I

1dudv)v,u(c)v,u(C4 . In turn, Spearman’s rank correlation coefficient is defined as the Pearson 

correlation coefficient between FX(X) and FY(Y), where FX and FY are the margins of X and Y, 

respectively. It holds that RankCorr(X,Y)= ∫∫ −
2I

3dudv)v,u(C12 .  
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In order to model the margins 
iXF , i=1,,.n, we resort to a semi-parametric 

procedure discussed by Carmona (2004). Specifically, the tails of the distribution can be 

modeled by means of the generalized Pareto distribution, while the empirical distribution 

can be used to model the center of the distribution. That is, parametric and non-

parametric approaches are used to model the tails and the center of the distribution, 

respectively.  

3 Data and estimation results 

 Our data set comprises the following Morgan Stanley Capital Investment (MSCI) 

indices: U.S. Investable Market Value, U.S. Large Cap 300, U.S. Mid Cap 450, and U.S. 

Small Cap 1750. The data is measured at a daily frequency and covers 15 years: June 

1992-June 2006. Some descriptive statistics are presented in Table 1. As previously 

found in other studies, returns exhibit excess kurtosis and negative skewness. All returns 

series are comparably volatile, as measured by their standard deviation and interquartile 

range.  

 Figure 1, panels (a) and (b) presents estimates of the tail index parameter of paired 

returns for large/mid cap and investable market value/small cap, based on empirical 

copulas. Specifically, 
q1

)q,q(Ĉq21
limˆ

1qu −
+−

=λ −→  and 
q

)q,q(Ĉ
limˆ

0ql +→=λ , where the 

empirical copula is computed according to equation (16). For the large/mid cap pair, the 

estimates of upper and lower tail dependence are around 0.64-0.68 and 0.68-0.71, 

respectively, as shown in Panel (a) of Figure 1. The estimated tail dependency index 

parameters for the investable market value/small cap are by contrast slightly smaller: 

around 0.43-0.44 in the upper tail and 0.52-0.55 in the lower tail.  
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 Table 2 reports the computation of Poon et al. ´s tail dependency test for both 

pairs. As we see in Panel (a), extreme-value dependency is not rejected for the large/mid 

cap pair in either tail, whereas for the investable market value/small cap, extreme-value 

dependency is accepted at the 5 percent significance level in the lower tail, but it is 

rejected in the upper tail at the 1 percent significance level. For the large/mid cap pair, the 

estimated tail index parameters are 0.69 and 0.67 in the lower and upper tails, 

respectively. These are fairly close to those reported above.  

 As shown in Panel (b) of Table 2, filtering the returns data by an AR(1)-

GARCH(1,1) model leads to rejecting upper tail dependency in both paired returns series. 

The null hypothesis of lower tail dependency continues to be accepted for the large/mid 

cap pair, whereas it is now rejected at a lower significance level for the investable market 

value/small cap (i.e., 2 percent level).  

 Our next step consists of fitting a suitable copula to the data, based on the 

dependency tests just reported. We first focus on the raw data and then on the filtered 

data. Figure 2 shows the result of fitting normal and t-Student’s copulas to the investable 

market value/small cap pairs. As a benchmark, the empirical copula is plotted along with 

each parametric model. As previously discussed, Poon et al.’s test suggests that there is 

tail independence in this pair. Therefore, a normal copula should be an appropriate choice 

(right-hand side panel of Figure 2). However, a t copula appears to be a better fit as it 

captures more accurately the dependence structure in the lower tail and in the center of 

the bivariate distribution. (The degrees of freedom and correlation coefficient are 

computed by the method of maximum likelihood, which was previously discussed). 
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Indeed, based on the Akaike, Schwarz, and Hannan-Quinn information criteria, the t-

copula outperforms the normal copula.  

 We follow a similar procedure for the large/mid cap pair. Given that in this case, 

Poon et al.’s test does not reject lower and upper tail dependency, our choice is a t-

copula. As a matter of comparison, we also fit a normal copula. As before, we conclude, 

based on the above three information criteria, that a t copula gives a better fit.  

Further evidence on the goodness of fit of the t copula is provided by Figure 3, 

which depicts QQ-plots of actual and simulated returns for the four indices. In general, 

we see that the simulated data resembles the actual returns to a great extent.  

 As discussed earlier, after filtering the raw data, lower and upper tail dependency 

is rejected for the investable market value/small cap at the 5 percent level. Figure 4 shows 

that indeed the estimates of the tail index parameters for this pair are smaller than in the 

raw data, particularly so for the upper tail. Therefore, a normal copula should be in 

principle suitable to this filtered pair. Poon et. al.’s test suggests in turn that the large/mid 

cap pair only exhibits lower-tail dependency. Based on this fact, we fit a Clayton copula 

to the data, which allows for lower-tail dependency, and also a t-copula. Our estimation 

results show that for the latter pair, a t copula, with 6 degrees of freedom and a 

correlation coefficient of 0.9, mimics the dependency pattern of the data more closely 

than a Clayton copula. For the former pair, the normal copula appears to be the right 

choice.  

 In sum, for the large/mid cap pair, filtering does not reduce tail dependency 

considerably and a t copula continues to provide the best fit. The impact of filtering on 

tail dependency only translates into a greater estimate of the number of degrees of 
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freedom of the t copula.11 For the second pair, however, filtering has an impact on our 

choice of a suitable copula. In particular, filtering washes away tail dependency, and a t 

copula becomes unsuitable. In the former case, Poon et al.’s test incorrectly suggests to 

pick a Clayton copula after filtering, whereas in the latter case it provides a proper 

guidance.  

 From our above results, it appears that Poon et al. test is biased towards rejecting 

the null hypothesis of tail dependency. In order to look into this issue, we carry out three 

Monte Carlo experiments, which are reported in Table 3. The first one consists of 

generating two returns series of 1,000 observations each from GARCH(1,1) models and 

assuming that the joint behavior of the two series is adequately modeled by a t copula. 

That is, by construction, our returns series exhibit dependency in both tails and the null 

hypothesis holds. The two other exercises consists of taking normal copulas with a 

moderate ρ (=0.5) and a relatively high correlation coefficient (=0.8). In these two cases, 

by construction, the null hypothesis is false.12 Each experiment is repeated 100 hundred 

times, and at each iteration Poon et al’s test is computed for the lower and upper tail.  

 Panel (a) shows that Poon et al.´s test exhibits a severe size distortion. For 

instance, at the nominal size (i.e., significance level) of 1 percent, we reject the null 

hypothesis  58 and 55 percent of the time in the upper and lower tail, respectively. That is, 

the actua l confidence level in each case is 42 and 45 percent, respectively, instead of 99 

percent. Panels (b) and (c) illustrate the ability of the test to reject a false null hypothesis. 

For a small correlation coefficient of the normal copula, the power of the test approaches 

                                                 
11 When the number of degrees of freedom is large enough, the t copula will approximate a normal copula, 
which does not display tail dependency unless the correlation coefficient equals 1. 
12 The normal copula only exhibits tail dependency when ρ=1, in which case λl=λu=1. 
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1. That is, the false null hypothesis is virtually always rejected. However, the power of 

the test decreases to a great extent for a higher correlation coefficient. For instance, when 

ρ=0.8, the power of the test is only 33 and 28 percent in the lower and upper tail, 

respectively, for a significance level of 1 percent.  

 Based on our findings, we conclude that copulas offer a reliable methodology to 

find a suitable functional form that describes accurately the dependence pattern of 

financial returns. By contrast, Poon et al’s tail dependency test may be misleading as it is 

biased towards rejecting the null hypothesis of asymptotic dependence.  

4 Conclusions  

 We discuss the choice of an optimal copula function of paired returns aimed at 

adequately capturing the co-movement between the two financial series. Our application 

focuses on daily data of four Morgan Stanley U.S. stock indices: U.S. Investable Market 

Value, U.S. Large Cap 300, U.S. Mid Cap 450, and U.S. Small Cap 1750, for the sample 

period June 1992-June 2006. Our estimation results show that a t-Student’s copula, which 

allows for lower- and upper-tail dependency, works well in general, and that, filtering 

returns may have an impact on the choice of the most suitable copula.  

 We also computed Poon et al.’s dependency test to complement our analysis, and 

found that this can be sometimes misleading as a guidance to select a suitable copula. We 

further discussed this issue by means of Monte Carlo simulations, which showed that 

Poon et. al’s test may exhibit size distortions and low power.  
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Tables 
 

Table 1  Descriptive statistics of MSCI U.S. returns: June 1992-June 2006 
 

Statistic 
U.S. Investable 
Market value 

U.S. Large 
Cap 300  

U.S. Mid 
Cap 450 

U.S. Small 
Cap 1750 

Minimum −0.060 −0.072 −0.083 −0.063 

Maximum 0.009 0.010 0.010 0.010 

1st Q −0.004 −0.005 −0.004 −0.005 
3rd Q 0.005 0.005 0.006 0.006 
Mean 0.000 0.000 0.000 0.000 

Std. Dev 0.051 0.057 0.055 0.050 
Skewness −0.183 −0.080 −0.302 −0.272 
Kurtosis –3 3.974 4.324 4.458 2.994 

Observations 3,674 3,674 3,674 3,674 
 
Notes: Log-returns are daily 
 

Table  2 Extreme -value dependency test 
 

(a) Raw data 
  Lower tail   Upper tail 

Paired return ρ k* χ  s.e t-test 
1=χ  

p-value χ  s.e k* χ  s.e t-test 
1=χ  

p-value χ  s.e 

Large/mid cap 0.91 191 0.92 0.14 –0.61 0.27 0.69 0.05 250 0.96 0.12 –0.31 0.38 0.67 0.04 
Value/small cap 0.81 299 0.83 0.11 –1.63 0.05 0.64 0.03 297 0.75 0.10 –2.48 0.01 0.59 0.03 

(b) Filtered data 
Large/mid cap 0.90 221 0.95 0.13 –0.35 0.36 0.68 0.04 299 0.77 0.10 –2.29 0.01 0.68 0.04 

Value/small cap 0.80 231 0.76 0.12 –2.1 0.02 0.64 0.04 299 0.66 0.10 –3.5 0.00 0.55 0.03 
 

Table 3  Simulation of rejection rates of tail dependency test 
 

 Percentage rejection rate of H0: tail dependence 
 (a) Data generating process: t Student’s copula (υ=5, ρ=0.5) 
 1 % significance level 5 % significance level 10 % significance level 

Lower tail 58 82 86 
Upper tail 55 80 90 

(b) Data generating process: Normal copula (ρ=0.5) 
 1 % significance level 5 % significance level 10 % significance level 

Lower tail 98 100 100 
Upper tail 98 100 100 

(c) Data generating process: Normal copula (ρ=0.8) 
 1 % significance level 5 % significance level 10 % significance level 

Lower tail 33 65 78 
Upper tail 28 65 82 

 
Notes: (1) Individual return series of 1,000 observations each are generated from GARCH(1,1) processes, 
and marginal distribution functions are estimated according to Carmona (2004)’s semi-parametric 
procedure. (2) Results are obtained from 100 simulations.  
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Figure 1  Tail index parameters of raw returns computed from the empirical copulas 
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 Figure 2  t-Student’s and normal copulas fitted to the Investable Market Value & Small CAP 1750 
pair 
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Figure 3  QQ-plot of actual and simulated returns based on a t-copula 
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Figure 4  Tail index parameters computed from empirical copulas of filtered returns 
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