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Abstract

In this paper we characterize the optimal procurement mechanism and the investment level

for an environment where two projects must be adjudicated sequentially, and the winner of the

first project has the opportunity to invest in a distributional upgrade for its costs in the second

project. We study 4 cases, based on the commitment level of the seller and the observability

of the investment decision. We find that with commitment, the second period mechanism gives

an advantage to the first period winner, and induces an investment level that is greater than

the efficient one. With non-commitment, the second period mechanism gives a disadvantage to

the first period winner, and induces an investment level that is smaller than the efficient one.

Observability is irrelevant in the commitment case, but makes the effects more pronounced in

the non-commitment case.

1. Introduction

During the last decades procurement auctions have been widely used as mechanisms to assign high

cost projects and tasks concerning goods and services. By the year 1998, the sum of all governments

expenditures in procurements (excluding defense and labor compensation) was estimated as 7.1%

of the worldwide GDP1 . The repeated utilization of procurement auctions by specific institutions

(governments or private sector), which contract with the same pool of firms over time, has made the

study of cost reduction investment by these firms specially relevant.

The objective of this paper is twofold. First, to characterize the cost-minimizing procurement

mechanisms in an environment with repeated interaction between a buyer and multiple sellers, where

investment can be undertaken as a cost-reduction device, and also as an strategic action devised

to obtain advantages in future procurement auctions. Second, to analyze the effects these cost-

minimizing mechanisms have on supplier’s investment decisions. This is particularly relevant if the
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relative size of expected expenditures is big compared with the value of just one particular purchase,

since in that case the use of tools that may reduce future costs, even at the cost of raising today’s

expenditures, can be particularly profitable.

We consider a buyer who wants to procure two consecutive projects and faces n ≥ 2 potential

suppliers. Costs for performing both tasks are distributed independently across time and competi-

tors, and they are private information to each firm. We assume, though, that the first procurement

winner (whose identity is public information for the second procurement) acquires an intrinsic ad-

vantage characterized by a distributional upgrade. Such phenomenon reflects a knowledge acquired

concerning the task performed, to which the rest of the firms have no access. Moreover, this up-

grade can be influenced by a costly cost-reducing investment that the winner may carry out between

the two procurements, increasing his chances of obtaining lower costs to perform the second period

task. In such a context, second period rules affect the investment decisions of first period winners,

and therefore, the degree of complementarity between both tasks, making it endogenous and chosen

strategically by the first-period winner.

We use the mechanism design approach to characterize the cost-minimizing mechanism, which

we determine under the assumptions of full commitment and non-commitment of the buyer. In the

case of full-commitment, we assume that the rules for both mechanisms are decided at t=0, before

any procurement mechanism or investment occurs. In the non-commitment case, the second-period

rules are determined after the winner of the first period is announced. In each case, we study the

case of observable and non-observable investment. If investment is observable and there is non-

commitment, we assume that the second-period rules are determined after the investment level is

decided.

We compare these cost-minimizing mechanisms, and the investment level they induce, with the

the ex-post efficient benchmark: each period the project is assigned to the least-cost supplier, and the

investment level induced is such that the marginal cost of investment equals the marginal benefit (in

expected terms) of cost reduction. We also show that, independent of investment observability, such

an incentive compatible mechanism exists and consists of two second price sealed bid procurements.

We show that, under full commitment of the buyer, the investment level induced by a cost-

minimizing mechanism does not depend on whether investment is observable or not, and it is higher

than the efficient level , so over-investment occurs. This is so because the cost-minimizing mechanism

gives an advantage gap to the first period winner in the second period. That is, he can get the second

contract even if his cost is higher than the minimum of the other competitors. Moreover, in the

mentioned environment and without observability, a higher advantage gap in the second period

mechanism induces a higher level of investment. This result can seem counterintuitive, since an

advantage gap can make the first period winner “relax”, knowing he owns a big advantage over

competitors and likely to win anyway. However, there is a second effect that dominates: investment,

by decreasing costs, increases the expected profits in case the firm gets the contract. Since with a

bigger advantage gap this happens more often, the expected payoff of a cost reduction is higher,

thus investment is more profitable.

In the non-commitment case, it is optimal for the buyer to give a disadvantage to the first

period winner, who holds a distributional advantage over its competitors. This fact is anticipated
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by the winner, leading to investment levels below efficiency. Observability then makes a difference:

by observing the investment level, the buyer can react optimally with even more disadvantageous

mechanisms and, as a consequence, the first period winner invests below the level chosen when

investment is not observable.

Finally, we derive some comparative statics with respect to the number of players. As it increases,

all the investment levels mentioned above decrease, but weakly preserving the order among them.

For a number of firms sufficiently large, the investment level in all environments collapses to zero:

if the number of competitors is large enough, inducing investment is too expensive for the buyer

relative to the marginal benefit in cost reduction. This is so because the marginal gain for the buyer

introduced by investing, that is the probability of getting a cost lower than the minimum of all other

competitors, decreases with the number of competitors.

These results have important normative implications: (i)cost-minimizing buyers, with the ability

to commit, and working in a dynamic2 environment, induce investment levels above the efficient

level, and (ii) a buyer’s lack of commitment induces under-investment in the same context. So,

in a dynamic context, mechanisms are not only optimal rules to assign tasks under asymmetric

information, they are also tools to induce more complementarity between projects, and therefore,

they are a way to generate incentives in cost reduction,

Our work is related to the literature in various ways. With the methodology of mechanism

design, Pesendorfer and Jofre-Bonnet in [?], derive the optimal mechanism for the case where the

complementarity is exogenous, there is full commitment and only two players. In that paper, the

advantage-gap that the first-period winner acquires for the second procurement, is independent of the

complementarity of the projects (in fact they could be substitutes), which is an exogenous feature.

This is not the case in our model, since the advantage-gap and the degree of complementarity are

related through the investment incentives.

With respect to the investment incentives in one-shot procurements, literature has focused mainly

on the consequences of an investment stage before a procurement. In this context, Piccione and

Tan [?] analyze the implementation of the efficient solution when firms are ex ante symmetric

and they can all invest (non observably) in R&D cost-reduction. They found that the answers is

affirmative if this technology presents diminishing returns to scale, and the mechanism can be a first

or second price sealed bid procurement. Dasgupta [?], in a similar model (investment stage and

non observability), shows that in a context of first and second price sealed bid procurements, the

buyer’s lack of commitment induces investment levels below efficiency. Moreover, he proves that

commitment rises the level of investment, but always below the efficient one.

Finally, Arozamena and Cantillon in [?], analyze the effects of allowing only one firm to invest

before the procurement auction when this action observable by competitors. Their main result is the

under-investment in first price sealed bid auctions: as a response to the cost-reduction investment,

rival firms will bid more aggressively, therefore reducing the investment incentives. We also get

under-investment, but for a different reason: under non-commitment, is the mechanism designer

(the buyer) that changes behavior, giving an advantage to worse firms, and therefore decreasing the

incentives to invest.

2By dynamic we understand more than one period
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2. The Model

2.1 The Environment

Consider a risk-neutral buyer who wants to procure two projects, one at t = 1 and the other at

t = 2. The set of competing firms is N = {1, ..., n}, n ≥ 2, all of which are risk-neutral and live for

the two periods. The buyer is compelled to procure the two goods or services3. In each period, the

cost of undertaking the project for a firm is drawn from the interval C = [c, c̄], and they become

private information of the firm. At t = 1, these costs are independently distributed according to

a distribution F (·), differentiable, that satisfies f(c) ≡ F ′(c) > 0 if c ∈ C (so firms are ex-ante

symmetric).

At t = 2, the competitors costs are drawn independently from those drawn in period 1, and

independently across firms as well. The costs of the first-period losers are taken from the same

distribution F (·). Instead, the winner of the first procurement (from now on the winner) has the

option of investing an amount I between auctions, and changes his distribution to G(·, I), with the

same support as before. This investment has a monetary cost Ψ(I) for the winner. Assumption ??

below implies a distribution improvement for the winner as a function of investment: an increase in

investment implies an increase in the chance of obtaining lower costs relative to higher ones. As a

consequence, higher investment induces a “better” cost distribution in the usual sense of first order

stochastic dominance. The formal result is in the lemma ?? in the next section.

Assumption 1 G ∈ C2(C × IR+). For all 0 ≤ I ′ < I ∈ IR and c′ < c ∈ C,

f(c′)

f(c)
<

∂G
∂c

(c′, I ′)
∂G
∂c

(c, I ′)
<

∂G
∂c

(c′, I)
∂G
∂c

(c, I)

Also, in setting I ′ = 0, this assumption implies an ex-ante degree of complementarity between

projects: the winner acquires a knowledge concerning the task performed (for instance the so called

know-how), which is not available to the losers, and enables him to improve his initial distribution

in the last period. Of course, the final degree of complementarity will depend on the amount the

firm invests in developing this know-how.

We also impose that the marginal benefit of investment is decreasing:

Assumption 2 For all I ∈ IR, ∂2G
∂I2 (·, I) < 0 in (c, c̄).

We now state two technical assumption, the first one is the monotone likelihood ratio, and the

second is a technical condition needed for integrability.

3In auction theory is usual to take into account the seller’s valuation, let’s say t0 > −∞, for the good he is selling.

In the case procurements, such valuation corresponds to the cost, call it C0, for which the buyer would carry out the

project. In what follows, we suppose that C0 = +∞
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Assumption 3 F (c)
f(c) ,

G(c,I)
∂G
∂c

(c,I)
are increasing in c ( regular). Also, F (c)

f(c) is differentiable (in particu-

lar, F is twice differentiable).

Assumption 4 There exists f ∈ L1(IR) such that
∣∣∣∣∣
∂G

∂I
(c, I)

∣∣∣∣∣ =
∂G

∂I
(c, I) < f(c), ∀ I ∈ IR

Finally, for the investment technology we assume

Assumption 5 Ψ(·) is twice differentiable and satisfies Ψ′(·) > 0, Ψ′′(·) ≥ 0.

For notation purposes, we denote the joint density of the first-period distribution as fn(c) =
n∏

j=1

f(cj). As usual, we define c−i = (c1, ..., ci−1, ci+1, ..., cn) and fn−1(c−j) =
∏
i6=j

f(ci).

The previous assumptions are not hard to satisfy. For example, we the family of distributions

introduced in Piccione and Tan [?], which they argue is a way of modeling investment in cost reduc-

tion of R&D technologies, satisfies them.

Example 6 Suppose that F (·) is a twice differentiable concave distribution. Then, it is straightfor-

ward that verifies the regularity assumption. The family of distributions given by

G(c, 0) = F (c)η with 0 < η < 1

and

G(c, I) = 1 − (1 − G(c, 0))γI+1 with γ > 0

satisfies assumptions ?? and ??, ??, and ?? (see Appendix A for a detailed proof).

2.2 The Mechanisms

We consider second period procurement mechanisms that can depend on the identity of the first-

period winner, but not on the cost-realization (revelation) of that first period. Moreover, we do not

allow the buyer to exclude sellers in the second period if they do not participate in the first. The

reason for these assumptions is that, otherwise, the buyer can extract the full second period surplus,

by threatening the sellers (in the first period) with very biased rules in the second.

The fact that costs are drawn independently across time enables the buyer to pay attention only

to incentive compatible mechanisms because the revelation principle applies. We will focus on two

types of environments: full commitment and non-commitment of the buyer. In the first case, the

buyer can commit to the first and second period mechanisms. In the second, he cannot, and he will

adjust according to the information he gathers before the second period.

In each case, we analyze when investment is observable and when it is not. The difference is

that in the observable case, the investment, and therefore the winner’s cost distribution for the
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second period is public information (as well as the losers’ distributions). Thus, in this setting the

mechanisms used by the buyer at t = 2 may depend on the level of investment chosen by the winner

of the first procurement auction.

Definition 7 A direct mechanism, when investment is not observable, is given by the tuple Γno =

(t1, q1, t2w, q2
w, t2l , q

2
l ), where t1 : Cn −→ IRn, q1 : Cn −→ ∆n, t2w : Cn −→ IR, q2

w : Cn −→ [0, 1],

t2l : Cn −→ IRn−1, q2
l : Cn −→ [0, 1]n−1, such that q2

w(c) +
∑
i6=w

q2
l,i(c) = 1 for all c ∈ Cn.

Definition 8 A direct mechanism, when investment is observable, is given by the tuple

Γ = (t1, q1, {t2w,I}I≥0, {q
2
w,I}I≥0, {t

2
l,I}I≥0, {q

2
l,I}I≥0)

where t1 : Cn −→ IRn, q1 : Cn −→ ∆n, t2w,I : Cn −→ IR, q2
w,I : Cn −→ [0, 1], t2l,I : Cn −→ IRn−1,

q2
l,I : Cn −→ [0, 1]n−1, such that q2

w,I(c) +
∑
i6=w

q2
l,I,i(c) = 1 for all c ∈ Cn and I ≥ 0.

When investment not observable, ts(c) = (ts1(c), ..., t
s
n(c)), and tsi (c) corresponds to the payment

to firm i ∈ N at time s = 1, 2, conditional on the vector report c = (c1, ..., cn). Analogously,

qs(c) = (qs
1(c), ..., q

s
n(c)), with qs

i (c) the probability that competitor i ∈ N wins the procurement

auction at time s = 1, 2 conditional on the same vector cost report. Finally, when investment can

be monitored, the functions are essentially the same, but now the second period rules may depend

on the investment level carried out by the first period winner prior to the last procurement.

A natural question that arises is whether the mechanism designer can improve by using mecha-

nisms with additional features. For instance, the buyer can make use of second period rules which

depend on the first period winner’s identity. In Appendix B we show that there is no improvement,

in terms of reducing buyer’s expected expenditures, when such history-dependent mechanisms are

taken into account. We can therefore restrict our analysis to mechanisms considered in definitions

?? and ??.

3. Preliminary Results

We first state a lemma involving some distributional consequences of assumption ??. In partic-

ular, that the monotone likelihood ratio property implies first order stochastic dominance as the

investment level decreases.

Lemma 9 Suppose that assumption ?? holds, then:

(i)
∂G
∂c

(c, I)

1 − G(c, I)
<

∂G
∂c

(c, I ′)

1 − G(c, I ′)
, ∀ c ∈ C, 0 ≤ I < I ′.

(ii)
G(c, I)
∂G
∂c

(c, I)
<

G(c, I ′)
∂G
∂c

(c, I ′)
, ∀ c ∈ C, 0 ≤ I < I ′.
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(iii) For every c ∈ C fixed, the function G(c, ·) is increasing. This is equivalent to first order

stochastic dominance as I decreases in the family of distributions {G(·, I)| I ≥ 0}.

Proof : Appendix A.

�

Condition (i) in the previous lemma is used by Arozamena and Cantillon in [?] when they refer

to a distributional upgrade. It states that, conditional on a certain cost level c, it is more likely to

obtain lower costs as investment increases.

We now turn to the model. In both periods the buyer specifies probabilities of winning the

project and payments (transfers) to each of the competitors depending on their costs reports. At

t = 1 firms are denoted by subscripts i = 1, 2, ..., n. So, if c′ = (c′1, c
′
2, ..., c

′
n) is the vector of reported

costs, the probability that firm i wins the first project, conditional on that report vector, is q1
i (c′),

i = 1, 2. By Q1
i (c

′
i) we denote the expected probability that player i wins the procurement auction

conditional on his announcement c′i, i = 1, 2. Then, it satisfies

Q1
i (c

′
i) =

∫

C

q1
i (c′i, c−i)f

n−1(c−i)dc−i, i ∈ N. (1)

The first period transfer for player i conditional on the report vector c′ = (c′1, ..., c
′
n) corresponds

to the expression t1i (c
′), i ∈ N . Then, the expected transfer for player i in this period, conditional

on his announcement c′i will be denoted by T 1
i (c′i) and verifies

T 1
i (c′i) =

∫

C

t1i (c
′
i, c−i)f

n−1(c−i)dc−i, i ∈ N. (2)

for i ∈ N .

For the observable case rename the first period winner by w, w ∈ N . The expression q2
w,I(c

′)

denotes the probability that this last competitor wins the second project if he had carried out an

investment I conditional on the reports vector c′ = (c′1, ..., c
′
n). Analogously, q2

l,I,i(c
′) corresponds to

the probability that player i 6= w wins the second procurement conditional on being a first-period

loser, the reports vector c′ and the amount of investment I chosen by the first period winner. The

expected second period probabilities satisfy

Q2
w,I(c

′
i) =

∫

Cn−1

q2
w,I(c

′
i, c−i)f

n−1(c−i)dc−i (3)

Q2
l,I,i(c

′
j) =

∫

Cn−1

q2
l,I,i(c

′
j , c−j)f

n−2(c−w,j)
∂G

∂c
(cw, I)dc−j (4)
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with i 6= w, i ∈ N .

Transfers tw,I(·) and tl,I,i(·), i 6= w, i ∈ N , are defined in the same way, that is, they depend on

the investment decided by the first period winner, on player’s reports and on being a first period

winner or loser. The expression T 2
w,I(c

′
w) corresponds to the expected transfer for the first period

winner at t = 2, when reported c′w as his cost and chosen an investment level I (Tl,I,i(c
′
i) is defined in

the same way with the obvious changes). Finally, in this setting, Π2
w,I(cw, c′w) will be the expected

utility at t = 2 for the same competitor when his real cost is cw and reported c′w (analogously for

firm i 6= w, Π2
l,I,i(ci, c

′
i), i ∈ N). Then we have,

Π2
w,I(cw, c′w) = T 2

w,I(c
′
w) − cwQ2

w,I(c
′
w) − Ψ(I), i ∈ N. (5)

Π2
l,I,i(ci, c

′
i) = T 2

l,I,i(c
′
i) − ciQ

2
l,I,i(c

′
i), i 6= w, i ∈ N. (6)

Assume from now on that the buyer wants the first period winner to invest an amount I. We

denote by Π1
i (ci, c

′
i) the discounted expected utility at t = 1 for firm i with cost ci and reported cost

c′i, conditional on revealing real costs at t = 2 and on the fact that every first period winner must

invest I. It satisfies

Π1
i,I(ci, c

′
i) = T 1

i (c′i) − ciQ
1
i (c

′
i) + βQ1

i (c
′
i)

∫

C

Π2
w,I(c, c)

∂G

∂c
(c, I)dc + β[1 − Q1

i (c
′
i)]

∫

C

Π2
l,I,i(c, c)f(c)dc. (7)

This last expression consists in expected payments and costs of the first procurement (the first two

terms), and the ones related to the second period expected utility (which depends on being the

winner or a loser in the first procurement auction), all conditional on the first period report and

cost c′i and ci, respectively.

As we said before, we can restrict the analysis to direct mechanisms. Truth-telling in the second

period is condensed in:

IC2
o






Π2
w,I(cw, cw) ≥ Π2

w,I(cw, c′w), ∀ cw, c′w ∈ C, ∀I ≥ 0.

Π2
l,I,i(ci, ci) ≥ Π2

l,I,i(ci, c
′
i), ∀ ci, c

′
i ∈ C, ∀ i 6= w, i ∈ N, ∀I ≥ 0

The corresponding for t = 1:

IC1
o : ∀ i ∈ N and I ≥ 0, Π1

i,I(ci, ci) ≥ Π1
i,I(c

′
i, ci), ∀ ci, c

′
i ∈ C.

There is no problem in defining incentive compatibility for any possible investment level I ≥ 0.

As we will see later, participation constraints will be constructed so that only the levels that the

buyer allows are realized. The following lemma is the common used characterization of incentive

compatible mechanisms:

Lemma 10 (Incentive Compatibility): In this context, Γ is incentive compatible if and only if
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(i) For all i ∈ N and I ≥ 0,

• Q1
i (·) is not increasing

• Π1
i,I(ci, ci) = Π1

i,I(c̄, c̄) +
c̄∫
c

Q1
i (ci)dci for all ci ∈ C

(ii) For all I ≥ 0,

• Qt
k(·) is not increasing, k = (w, I), (l, I, i), i 6= w, i ∈ N .

• Π2
k(ck, ck) = Π2

k(c̄, c̄) +
c̄∫
c

Q2
k(ck)dck for all ck ∈ C, k = (w, I), (l, I, i), ∀ i 6= w, i ∈ N .

Proof: Appendix A.

�

To conclude, when investment is not observable, mechanisms (probabilities and transfers) can’t

depend the level of investment chosen by the first period winner. For this reason, mechanisms in

this setting omit the variable I and all the above expressions can be obtained with this notational

change. Nevertheless, this feature (mechanisms’ investment-independence) is quite different from

saying that these rules can’t depend on an “optimal”4 level of investment, which can certainly

happen. In other words, mechanisms cannot be functions of investment, but they can be designed

to induce, for instance, a certain investment I, that will appear implicitly in those rules.

4. Revenue Maximization Under Full Commitment

In this environment we assume the existence of institutions that may enforce the contracts estab-

lished by the buyer. We start with the investment-observability case.

4.1 Investment Observability and Full Commitment

In this context, since investment is observable, the buyer can induce any amount of investment he

wants. This can be done by setting transfers so low enough (even payments to the buyer) so that any

other level chosen by the first period winner is unprofitable for him. Under this schemes, histories

associated to investment levels different from the ones the buyer wants to induce never happen.

Assume from now on that the buyer wants to induce the first period winner to invest a level

I ≥ 0. Participation in the second procurement auction is ensured by

PC2
o (I)





Π2
w,I(cw, cw) ≥ 0, ∀cw ∈ C

Π2
l,I,i(ci, ci) ≥ 0, ∀ci ∈ C, i 6= w, i ∈ N.

4Optimal depends on the problem being solved.
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For any other amount of investment Ĩ 6= I carried out by the first period winner, the buyer can

simply set transfers low enough so that the expected second period utility for the first period winner

is negative for any possible cost. This can be done because investment is observable, hence, transfers

depend on this variable and, as a consequence, the buyer can punish the first period winner if this

agent deviates from the specified level.

At t = 1, we consider the participation constraint presented in Pesendorfer and Jofre-Bonet [?],

that is, participating in both procurements auctions is more profitable (in expected terms) than

doing this only in the last one. This notion is condensed in

PC1
o (I) : Π1

i,I(ci, ci) ≥ β

∫

C

Π2
I,I,i(c, c)f(c)dc, ∀ ci ∈ S, ∀ i ∈ N

This last constraint is valid since the buyer may optimally restrict to mechanisms independent of the

first period winner’s identity, so if player i, i ∈ N , decides not to participate in the first procurement

auction, his expected utility at t = 1 will correspond to β
∫
C

Π2
l,I,i(c, c)f(c)dc regardless of previous

winner’s identity.

We are now ready to state the optimization problem that faces the mechanism designer. Denote

by C = C(Γ, I) the expected procurement cost when the buyer uses mechanism Γ and wants to

induce an investment level I ≥ 0. Since the buyer can restrict to mechanisms that do not depend

on the first period winner’s identity (see Appendix B) this expression corresponds to:

C =
n∑

i=1

∫

C

T 1
i (c)f(c)dc + β




∫

C

T 2
w,I(c)

∂G

∂c
(c, I)dc +

∑

j 6=w

∫

C

T 2
l,I,j(c)f(c)dc



 (8)

Therefore, this agent solves:

Po





min
Γ,I

C(Γ, I)

s.t IC1
o , IC2

o

PC1
o (I), PC2

o (I)

We will refer to a feasible mechanism Γ(I) if it fulfills the restrictions of the problem Po(I), that

is, the problem solved by a buyer who wants to induce an investment level I.

Now we present the essential result concerning mechanisms. Considering the degree of generality

stated in Section 2, the minimizing cost mechanism under investment observability satisfies that:

second period rules do not depend on (i) first period winner’s identity, (ii) identities between first

period losers and (iii) investment level carried out by the first period winner.
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Theorem 11 Under full-commitment and investment observability, the cost-minimizing mecha-

nism, call it Γ∗, does not depends on the first period winner’s identity nor investment, and it is

characterized by

q1∗
i (c1, ..., cn) =

{
1 ci + F (ci)

f(ci)
< cj +

F (cj)
f(cj)

∀j 6= i

0 ∼
(9)

q2∗
w (cw, c−w) =

{
1 cw < g(ci,l) ∀i 6= w

0 ∼
(10)

q2∗
l,i(ci, c−i) =

{
1 g(ci) = min{cw, g(cj); ∀j 6= w}

0 ∼
(11)

with g(c) = c +
(
1 + 1

n−1

)
F (c)
f(c) , c ∈ C.

Proof : Appendix A.

�

Observation 1: It is important to emphasize that this mechanism does not depend on invest-

ment and, therefore, it is optimal in when cost-reducing opportunities are not available. In this

context, with n = 2 we obtain Pesendorfer’s optimal mechanism exposed in [?].

At t = 1 the minimizing rule correspond to the one derived by Myerson in [?] and it is efficient

because of the first period symmetry across competitors and assumption ??. Note that the first

period winner obtains an advantage gap for the second procurement, that is, this firm is able to win

the second procurement even when some other rivals present lower costs. This gap decreases with

the number of firms: as long as the number of competitors increase, giving the same advantage to

the first period winner is more expensive for buyer, since it is likely that some other competitors are

below this agent’s cost. Nevertheless, this gap never disappear, reflecting that sequentiality intro-

duces memory in the optimal contract, expressed in the mentioned advantage. As a consequence,

the minimizing-cost rule in the second period always sacrifices efficiency in order to reduce expected

costs. Finally, since this mechanism does not depend on the level of investment I, it is also feasible

when this variable is not observable.

Observation 2: The rule defined in the previous theorem, and the procedure to obtain it, does

not rely on the ex-ante degree of complementarity among both projects. In other words, it is optimal

when there is no distributional change across time, and even when projects are substitutes, notion

captured by the inequality
f(c′)

f(c)
>

∂G
∂c

(c′, 0)
∂G
∂c

(c, 0)
, ∀ c′ < c ∈ C

In the first case, this occurs because the buyer is able to inter-temporally distribute incentives across

time in a better way than performing two independent procurements. In other words, transfers are

11



modified, when compared to the independent-procurements contract transfers, in order to reduce

costs. In the case of substitutes projects, there is an additional feature to take into account, which

is the advantage given to the competitor with the worst distribution. Nevertheless, this mechanism

is still cost minimizing: it is less likely that the first period winner obtains lower costs than every

loser, so even when the worst firm has an advantage, it wins the second period procurement less

number of times in average. This effect, in addition to the inter-temporal incentives distribution

capability, out-weights the increase in expected costs due to the advantage gap.

To establish the optimal contract for the buyer in this setting, it remains to show the cost-

minimizing investment level that the buyer wishes to be implemented, call it I∗. The next result

characterizes it:

Theorem 12 Under full-commitment of the buyer and investment observability, the cost-minimizing

investment level I∗ is the solution to

max
I≥0

∫

C

[1 − F (g−1(c))]n−1G(c, I)dc − Ψ(I) (12)

Proof: Appendix A.

�

4.2 Investment Non-Observability and Full-Commitment

As we said before, in this case rules can’t be functions of the investment level chosen by the first

period winner. In this setting, it is the first period winner who decides the amount of investment

to be carried out, but the buyer can design mechanisms to induce specific levels he may wish to

implement. Therefore, the buyer solves:

Pno





min
Γno,I

C(Γno, I)

s.t I ∈ arg max
Î≥0

∫
C

Π2
w(c, c)∂G

∂c
(c, Î)dc

IC1
no, IC2

no

PC1
no(I), PC2

no(I)

Because in this setting investment is not observable, participation and incentive-compatibility

constraints are accompanied by “(no)”. They are essentially the same ones of the observable case,

but involving investment-independent mechanisms (definition 6). The first restriction must be added

because now the investment level is chosen by the first period winner. It specifies that the cost-

minimizing investment level that the buyer wishes to be implemented must be optimal under mech-

anism Γno for the first period winner as well. In other words, winner’s transfer and probability of

winning the second procurement, which are functions depending only on costs reports, must induce

12



the exact investment level the buyer wants if the first period winner is to choose this variable.

Denote by I∗ the cost minimizing investment level when this variable is observable and (Γ∗
no, I

∗
no)

the solution to Pno. It is clear that

C(Γ∗, I∗) ≤ C(Γ∗
no, I

∗
no)

that is, at the optimum, the expected procurement cost is lower when investment is observable.

This is due to the additional restrictions in Pno: I∗no must be optimal for the first period winner,

and, the buyer is constrained to look in a smaller set of mechanisms (not investment dependent).

In this context, if we find a feasible mechanism (Γno, Ino) such that C(Γ∗, I∗) = C(Γno, Ino), then,

(Γ∗
no, I

∗
no) = (Γno, Ino) and the problem is solved.

The next result establishes that, when investment is not observable, the expected total cost of

the investment-observability solution C(Γ∗, I∗) can be achieved by using the same mechanism Γ∗ (it

is feasible because it doesn’t depend on investment). Moreover, the investment level induced in both

settings is the same. Therefore, the optimal solution of the full commitment case, (Γ∗, I∗), does not

depend on investment observability.

Proposition 13 Under full commitment of the buyer and investment non-observability, the solution

to Pno is Γ∗
no = Γ∗, I∗no = I∗, with (Γ∗, I∗) the full commitment investment observability solution.

Therefore, as (Γ∗, I∗) is the solution in both settings, observable and non-observable investment, we

call it the full commitment cost-minimizing solution.

Proof: Appendix A.

�

As an interpretation, when the buyer set rules according to the optimal mechanism Γ∗, he pro-

vides the right incentives to induce the first period winner to invest I∗, the same level that the

auctioneer would have chosen himself.

Observation 3: More generally, if investment can’t be observed, when facing a mechanism

with second period expected probability for the first period winner Q2
w(·), this agent decides his

cost-reduction level by solving

max
I≥0

∫

C

Π2
w(c, c)

∂G

∂c
(c, I)dc − Ψ(I)

As
∫
C

Π2
w(c)∂G

∂c
(c, I)dc = T 2

w(c̄)− c̄Q2
w(c̄) +

∫
C

Q2
w(c)G(c, I)dc−Ψ(I) the problem that solves the first

period winner when investment is not observable is equivalent to

max
I≥0

∫

C

Q2
w(c)G(c, I)dc − Ψ(I)

13



This last expression will be used constantly throughout the rest of the paper. In the particular case

of Γ∗, we have that

Q2∗
w (c) = [1 − F (g−1(c))]n−1

Then (??) is exactly the problem that the first period winner solves when investment is not observ-

able and the buyer chooses Γ∗. From now one we assume that I∗ > 0 and satisfies the first order

condition of this problem.

Observation 4: It is interesting that even when projects are ex ante substitutes, if investment

in cost reduction is relatively large, complementarity between them can arise endogenously. That

is, mechanisms play a dual role in a context of sequential procurements: they are optimal ways of

assigning tasks, and also, they are tools available for the buyer to induce cost reduction. If this

last agent establishes the correct incentives, ex ante substitutes projects may become complements

endogenously. The following numerical example illustrates this issue.

Example 14 (Endogenous Complementarity): Suppose n = 2, C = [0, 1], F (c) = c if c ∈ C.

Assume that G(c, 0) = cη and G(c, I) = 1 − (1 − G(c, 0))γI+1 if c ∈ C. Ex-ante substitutes tasks is

condensed in
f(c′)

f(c)
>

∂G
∂c

(c′, 0)
∂G
∂c

(c, 0)
, ∀c′ < c

We will use three values5 for η: 1.5, 3, 6. Because in each case η > 1, it is easy to see that the

projects studied here are substitutes. Consider γ = 5 and an investment cost function Ψ(I) = 0.01I2

2 .

Recall that, under full commitment, the minimizing cost investment level I∗ solves (??). For each

η, the first order condition satisfied by I∗η corresponds to

H ′
η(I∗η ) = 5

1∫

0

[
1 −

c

2

]
[1 − cη](5I∗

η+1)|log(1 − cη)|dc − 0.01I∗η = 0

Numerically, we find that 2.7≤ I∗1.5 ≤ 2.8, 2.9≤ I∗3 ≤ 3.0, 2.4≤ I∗5 ≤ 2.5 and call each lower bound

Iη. Because of assumption ??, in order to show that projects become complements, it suffices to

show that
f(c′)

∂G
∂c

(c′, Iη)
<

f(c)
∂G
∂c

(c, Iη)
, ∀c′ < c

in other words, that

Lη(c) =
f(c)

∂G
∂c

(c, Iη)

is increasing in c ∈ C. Under our assumptions, this is equivalent to the function ∂G
∂c

(c, Iη) to be

decreasing in the same variable. Numerical results are presented in the figures below.

5No particular reason exists in choosing this numbers
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Figure 1 shows H ′
η(·) for each η considered. It illustrates that it is not necessarily true that higher

ex-ante levels of substitution lead to lower investment levels (green and blue lines cross each other).

On the other hand, in Figure 2 the functions Lη(·) are depicted. It is clear that as long the degree

of substitution between projects decreases, the costs-zone in which each function increases becomes

smaller. In other words, investment leads to bigger distributional improvements as both tasks are

less substitutes. In the particular case of η =1.5, it is interesting to note that projects almost become

complements endogenously (numerically, only for costs levels under 0.084 the function increases).

5. Non-Commitment

In this environment we assume that the buyer cannot commit to a second period contract before the

investment stage, and this fact is known by the competitors. This fact induces, through a second

period mechanism that is disadvantageous to the first period winner, an investment level below the

one induced when there is commitment. Also, in this setting, the observability of investment will do

make a difference (unlike the case of commitment).

To begin with, suppose that the first period winner invested an amount I before the second pro-

curement. Because the buyer is able to change the mechanism at any time before this procurement

takes place, he has the incentive to impose new optimal rules considering the investment expendi-

tures, Ψ(I), as a sunk costs. Recall from the preliminary results section, that under an incentive

compatible mechanism, the second period expected utility for the winner is expressed by

Π2
w,I(c, c) = T 2

w,I(c) − cQ2
w,I(c) − Ψ(I)

Therefore, as in a one-shot procurement, the auctioneer has the incentive to impose the following

participation constraint:

T 2
w,I(c) − cQ2

w,I(c) ≥ 0, ∀c ∈ C
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which in our case can be written as

Π2
w,I(c, c) ≥ 0, ∀c ∈ C.

Finally, as in the previous sections, the second procurement expected cost corresponds to

C2(I) =

∫

C

T 2
w,I(c)

∂G

∂c
(c, I)dc +

∑

i6=w

∫

C

T 2
l,I,i(c)f(c)dc

We start considering the case when investment is observable.

5.1 Investment Observability and Non-Commitment

Because investment is observable, the buyer can make us of mechanisms of the form

Γ2 = ({t2w,I}I≥0, {q
2
w,I}I≥0, {t

2
l,I}I≥0, {q

2
l,I}I≥0)

that is, second period rules considering that investment can be monitored. Therefore, when the first

period winner has already chosen an investment level I (observable), the buyer solves:

P̂o(I)





min
Γ2

C2(I)

s.t Π2
w,I(c, c) ≥ −Ψ(I), ∀c ∈ C

Π2
l,i(c, c) ≥ 0, ∀c ∈ C, ∀i 6= w, i ∈ N

IC2
o

Inequality Π2
w,I(c, c) ≥ −Ψ(I) reflects the fact that the buyer consider the winner’s investment

expenditures as a sunk cost. It is worth to emphasize that because of the buyer’s inability to

pre-commit to contracts, he cannot decide the investment level even though it is observable. As

a consequence, it is the first period winner, anticipating how the buyer will react when facing

different investment levels, the one that determines how much investment will be carried out. The

following result characterizes the mechanism and investment level induced under non-commitment

of the buyer and investment observability. It also shows that the buyer gives disadvantage to the

first period winner at t = 2: since the buyer cannot fully commit to contracts and the first period

winner has improved his distribution, the buyer has no incentive to continue giving the mentioned

advantage gap of the full commitment solution. Rather, it is optimal for him to give disadvantage

to the winner due to the fact that it is more likely that this competitor report lower costs. As

usual in auction theory, informational asymmetries harm the competitor with the best distribution

in one-shot auctions.

Proposition 15 In the absence of buyer’s commitment, the level of investment induced when this

variable is observable, Î, solves

max
I≥0

∫

S

[1 − F (g−1
1 (h(c, I))]n−1G(c, I)dc − Ψ(I) (13)
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with h(c, I) = c + G(c,I)
∂G
∂c

(c,I)
and g1(c) = c + F (c)

f(c) . In this case, the second period cost-minimizing

mechanism Γ̂2(Î) corresponds to

q̂2
w,Î

(cw, c−w) =





1 cw + G(cw,Î)

∂G
∂c

(cw,Î)
) < min

i6=w

{
ci + F (ci)

f(ci)

∣∣∣ j 6= w
}

0 ∼
(14)

q̂2
l,Î,i

(ci, c−i) =

{
1 ci + F (ci)

f(ci)
< min

{
cw + G(cw,Î)

∂G
∂c

(cw,Î)
, cj +

F (cj)
f(cj)

∣∣∣ j 6= j, w
}

0 ∼
(15)

Proof : Appendix A.

�

Since h(·, I) > g1(·) (Lemma ??, (ii)), it can occur that the first period winner loses the second

procurement even when having the lowest cost among all competitors. Therefore, this mechanism

gives disadvantage to the first period winner.

5.2 Investment Non-Observability and Non-Commitment

We now assume that investment is not observable. If the buyer could monitor the investment level

chosen by the first period winner, call it I, would react optimally imposing Γ̂2(I) (see proposition

??’s proof) defined by:

q̂2
w,I(cw, c−w) =





1 cw + G(cw,I)

∂G
∂c

(cw,I)
) < min

i6=w

{
ci + F (ci)

f(ci)

∣∣∣ j 6= w
}

0 ∼
(16)

q̂2
l,I,i(ci, c−i) =

{
1 ci + F (ci)

f(ci)
< min

{
cw + G(cw,I)

∂G
∂c

(cw,I)
, cj +

F (cj)
f(cj)

∣∣∣ j 6= j, w
}

0 ∼
(17)

Because now investment can’t be observed, the buyer and first period winner enter into a simultaneous-

move game. The action space for the first period winner is

Aw = [0, +∞)

On the other hand, the buyer may choose any incentive compatible mechanism. Since the best-

responses space for the buyer is BRb = {Γ̂(I)| I ≥ 0}, we will only pay attention to this type

of incentive compatible mechanisms. Recall that when the first period winner a mechanism with

second period expected probability function Qw(·), he chooses the optimal investment level solving

max
I≥0

∫

C

Q2
w(c)G(c, I)dc − Ψ(I)

Now we define a pure strategy equilibrium in this context:
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Definition 16 A pure strategy equilibrium under non-commitment and investment non-observability

is a tuple (Γ̂2(
ˆ̂
I),

ˆ̂
I) ∈ BRb × Aw that solves





min
Γ̂(I)

C2(I)

s.t. I ∈ arg max
I≥0

∫
C

Q̂2
w,I(c)G(c, I)dc − Ψ(I)

Π2
w,I(c, c) ≥ −Ψ(I), ∀c ∈ S

Π2
l (c, c) ≥ 0, ∀c ∈ S

IC2
no

Γ̂2(I) ∈ BRb

with

Q̂w,I(c) =

{
(1 − F (g−1

1 (h(I, c))))n−1 g−1
1 (h(I, c)) < c̄

0 ∼

and

h(I, c) = c +
G(c, I)
∂G
∂c

(c, I)
, g1(c) = c +

F (c)

f(c)

�

That is, in contrast with the observable case when the first period winner could move first

choosing his best investment level (anticipating how the buyer would react), both players now move

simultaneously. Consider the function

Uw(I | Ī) =

∫

S

[1 − F (g−1
1 (h(Ī , c)))]n−1G(c, I)dc − Ψ(I) (18)

which corresponds to the second period expected utility for the first period winner if invested an

amount I when facing the mechanism Γ̂2(Ī). Finally, define V (I) = Uw(I | I) (this is exactly the

function that appears in (??), Proposition ??). It is important to stress that there are three forces

that influence V (·)’s behavior: [1 − F (g−1
1 (h(I, c))]n−1 which makes that V (I) decrease as I grows,

G(c, I) that increases with I for each c ∈ S, and −Ψ(I) with a negative effect. Because of assump-

tion ?? and the double negative effect, we will assume that V (·) corresponds to:

(type 1 ) V (0) ≥ 0, exists ν > 0 such that V (·) is increasing in [0, ν] and then decreases for ever.

Note that in this case ν = Î, the investment level induced under non-commitment and investment

observability (Proposition ??).

(type 2 ) Strictly decreasing. In this case it is direct that Î = 0 by simply looking at ??.

18



In both cases we assume that V (I) is negative for I sufficiently large. The following result estab-

lishes the existence of a pure equilibrium for each V -type, characterizes the equilibrium investment

level induced and compares it with the one derived in the non-commitment and investment observ-

ability case.

Proposition 17 Assume that

lim
I→∞

∫

C

[1 − F (g−1
1 (h(I, c))]n−1 ∂G

∂I
(c, I)dc − Ψ′(I) < 0 (19)

If V (·) is one of type 1, there is a unique pure strategy equilibrium (Γ̂2(
ˆ̂
I),

ˆ̂
I) and satisfies

ˆ̂
I > Î. It

is characterized by

∂Uw

∂I
(I |

ˆ̂
I)
∣∣∣
I=

ˆ̂
I

= 0 (20)

If V (·) belongs to type 2, existence and uniqueness are also ensured, but it could be the case that
ˆ̂
I = 0 (in this case Î = 0 as well). If not, it is characterized by the above equation and satisfies the

same relation with Î.

Proof : Appendix A.

�

It is interesting to note that, under non-commitment, observability induces lower investment.

If the buyer can’t commit to the contracts, and investment is observable, when facing higher lev-

els of this variable he answers with more disadvantageous mechanisms: it is optimal for him to

impose Q2
w(c) = [1 − F (g−1

1 (h(I, c))]n−1 that decreases with I. This happens because after cost

reducing investment, the first period winner is more likely to obtain lower costs, and therefore, the

buyer can give more disadvantage to this competitor in order to reduce expected expenditures. As

a consequence, the investment level induced when this variable is observable falls in comparison

with other case. Observe also that if V (·) corresponds to type 2, it does not means that there will

be no investment: we only assert that if there is no positive one, then (Γ̂(0), 0) will be an equilibrium.

Observation 6: We first check that the distributional upgrade introduced in Example 1 satisfies

the requirement (??) of Proposition ??. Note that G(c, I) = 1 − (1 − Fw(c))γI+1 satisfies

lim
I→∞

∂G

∂I
(c, I) = lim

I→∞

(
−γ(1 − Fw(c))γI+1log(1 − Fw(c))

)
= 0

if c 6= c̄, c. Since

lim
I→∞

[1 − F (g−1
1 (h(I, c)))]n−1 ∂G

∂I
(c, I) = 0
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the Dominated Convergence Theorem allow us to conclude that

lim
I→∞

∫

S

[1 − F (g−1
1 (h(I, c)))]n−1 ∂G

∂I
(I, c)dc − Ψ′(I) = − lim

I→∞
Ψ′(I) < 0.

Then, (??) is fulfilled.

To conclude this part, we compare the full commitment investment level I∗ with the ones derived

in this section. It states that commitment raises the investment levels chosen by the first period

winner. Therefore, in a context of sequential procurement auctions, a buyer concerned about induc-

ing cost reduction must commit to the contracts in order to achieve that goal.

Proposition 18 If I∗ is the full commitment investment level, and Î and
ˆ̂
I the ones derived un-

der no commitment when investment is observable and when it is not respectively, they satisfy

Î ≤
ˆ̂
I < I∗. Equality between Î and

ˆ̂
I holds only if V (·) is one of type 2 (in this case, Î = 0).

Proof : Appendix A.

�

Basically, the intuition of the result is the following: disadvantageous mechanisms disincentive

cost-reduction investment. In other words, the marginal cost of investing becomes stronger, when

compared to the marginal benefit in reducing the expected second project cost realization, as long

as rules become less attractive (in terms of reducing the chances to win the second procurement).

Since the buyer favors the losers when there is no commitment, in contrast to the advantage gap

given to the first period winner in the other environment, this pattern is observed.

6. Efficiency

In this section we prove the existence and provide a characterization of an ex-post efficient mecha-

nism. That is, one that in each period assigns the project to the lowest cost supplier and induces an

investment level such that the marginal cost of investment equals the marginal benefit (in expected

terms) of cost reduction. Also, we compare such an efficient investment level with the ones induced

by the revenue maximizing mechanisms derived in the previous sections for different environments.

The efficient mechanism, that we will denote by Γe, must assign each project to the competitor

with the lowest cost realization. Thus, the assignment rules in each period must be given by:

q
t,e
i (c) =

{
1 ci < cj ∀j ∈ N

0 ∼
(21)

20



for t =1,2. Given this rules, and if the first period winner invests a quantity I, the expected social

cost is

C(Γe, I) =

∫

Cn

[
n∑

i=1

ciq
1,e
i (c)

]
fn(c)dc+β

∫

Cn


cwq2,e

w (c) +
∑

i6=w

ciq
2,e
i (c)


 fn−1(c−w)

∂G

∂cw

(cw, I)dc+βΨ(I)

A simple calculation shows that

C(Γe, I) = n

∫

C

c[1 − F (c)]n−1f(c)dc + β

∫

C

c[1 − F (c)]n−1 ∂G

∂c
(c, I)dc

+β(n − 1)

∫

C

c[1 − F (c)]n−2[1 − G(c, I)]f(c)dc + βΨ(I) (22)

The efficient investment level, Ie, is the solution to

min
I≥0

C(Γe, I) (23)

The next result characterizes Ie and states that the efficient mechanism exists regardless of

investment observability.

Proposition 19 The efficient investment level Ie is the solution to

max
I≥0

∫

C

[1 − F (c)]n−1G(c, I)dc − Ψ(I) (24)

Moreover, it can be induced regardless of investment observability using second price sealed bid

procurement auctions each period.

Proof : Appendix A.

�

Finally our main result:

Proposition 20 (Over-investment): The following relationship holds

Î ≤
ˆ̂
I < Ie < I∗ (25)

That is, in a context of sequential procurements and full commitment of the buyer, the cost mini-

mizing investment level is bigger than the efficient one. Also, buyer’s lack of commitment induces

investment levels below efficiency.

21



Proof : Appendix A.

�

Proposition 6 is the reflect of an assertion previously stated: the more advantage given to the

first period winner at the last procurement, the more investment induced. In this context, the

efficient mechanism is a fair rule in terms of assigning no advantage to any competitor. Therefore,

induces less investment than the full commitment mechanism and more investment relative to the

non-commitment rules. As an example, consider two incentive compatible mechanisms Γ̃ and Γ,

not depending on investment, such that Q̃2
w(c) ≥ Q

2

w(c) for all c ∈ C. In other words, Γ̃ gives

more advantage to the first period winner at the second procurement than Γ. Assume also that this

variable can’t be observed. Therefore, for any fixed investment level I we have

∫

C

Q̃2
w(c)

∂G

∂I
(c, I)dc − Ψ′(I) ≥

∫

C

Q
2

w(c)
∂G

∂I
(c, I)dc − Ψ′(I) (26)

and, as a consequence, the level chosen by the first period winner when this variable is not observ-

able is higher under Γ̃ (recall the first order condition of the winner’s problem, assumption ?? and

Ψ’s convexity). It is quite interesting to observe that when mechanisms are extremely inefficient,

in terms of assigning the last project to the first period winner all the time (i.e. Q2
w(c) = 1), there

are still investment incentives and, moreover, due to the above inequality the induced level is the

highest possible. This result can seem counterintuitive, since an advantage gap can make the first

period winner “relax”, knowing he owns a big advantage over competitors and likely to win anyway.

In order to understand this result we must consider two effects. First, cost reduction investment

increases the winner’s second period expected costs through Ψ’s effect. On the other side, giving

more advantage to this agent raises his second period expected utility, which enables him to invest

more in cost reduction, and a a consequence, expected second period costs reduce through the dis-

tributional upgrade effect. Therefore, it must be that latter effect dominates always the former.

7. Discussion

7.1 Investment Observability “Irrelevancy”

The fact that investment observability cannot improve the buyer’s ability to reduce expected costs in

the case of full commitment is interesting. Moreover, this is also the case when the buyer’s objective

is ex-post efficiency, since the ex-post efficient stage mechanisms induce the efficient investment level.

A natural question that arises is whether this is true for any mechanism used by the buyer. The

answer is no, as shown in the next result. When the buyer sets, for instance, a mechanism that gives

less advantage to the first period winner at the second stage than the one in the cost-minimizing

mechanism, the investment level chosen by the auctioneer (in the observable case) is higher than

the one induced when investment is not observable. The intuition is as follows: a less advantageous

mechanism for the first period winner implies that he agent invests less (recall the discussion at the
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end of the efficiency section). On the other hand, the buyer compensates this sub-optimal mecha-

nism by imposing a higher cost-reducing investment level than the one in the optimal mechanism.

Proposition 21 Set n = 2 and assume that the buyer wants to implement the following incentive

compatible mechanism:

q̃2
w,I(cw, cl) =

{
1 cw < g(cl)

0 ∼
(27)

with g(·) an increasing function that satisfies

g(c) ≤ g2(c) = c + 2
F (c)

f(c)
, ∀c ∈ C

with strict inequality on a positive-measure subset of C. Denote by Ĩb and Ĩw the investment levels

chosen by the buyer and first period winner respectively when facing this mechanism. Then, Ĩb > Ĩw

Proof : Appendix A.

�

7.2 Number of Competitors

Let n < m ∈ IN and I∗(n), I∗(m) the full commitment solutions when there are n and m competitors

respectively. Consider the functions

gl(c) = c +

(
1 +

1

l − 1

)
F (c)

f(c)

and recall that gl(·) is exactly the function g(·) used in the full commitment section for the case of

l competitors. Because both functions are increasing in c and gn(·) > gm(·), it is easy to see that

Q2∗
w,n(c) =

[
1 − F (g−1

n (c))
]n−1

>
[
1 − F (g−1

m (c))
]m−1

= Q2∗
w,m(c)

that is, the first period winner has more chances of winning the second procurement when the

number of competitors decreases. This is due to two factors: as the number of competitors grows,

the advantage to the winner decreases, and also it is more difficult to obtain costs low enough relative

to all rivals. Thus, (??) implies that I∗(n) > I∗(m), and since

lim
n→∞

Q2∗
w,n(c) = 0, ∀c ∈ C

we conclude that I∗(n) → 0.

Two effects induce this result. From the first period winner’s point of view, the incentives to invest

decrease with the number of players because mechanisms become more disadvantageous, and there-

fore the probability of winning decreases, and with it the probability of effectively gaining from a

23



cost reduction.6 On the other hand, from the buyer’s perspective, expected costs are reduced due

to the fact that more competition is generated when the number of players increases, so inducing

cost reduction becomes relatively expensive (recall that the buyer ensures participation for the first

period winner at the investment level he chooses) in comparison to the marginal reduction of ex-

pected expenditures through the distributional upgrade.

If the number of players is large enough, the buyer would not want to induce cost reduction

eventually. In fact, denoting by Î(n),
ˆ̂
I(n), Ie(n) the investment levels for the corresponding cases

when there are n competitors, Proposition ?? still holds, that is, 0 ≤ Î(n) ≤
ˆ̂
I(n) < Ie(n) < I∗(n),

so they all collapse to zero when n → ∞ (eventually for n ≥ n̄, some n̄ ∈ IN).

8. Conclusions

Throughout this paper we have analyzed the interaction between sequential procurements auctions

and cost reduction investment, from a mechanism design approach. Our main finding is the role

of mechanisms not only as optimal rules to assign tasks, but as investment-incentive tools in a

dynamic context. As the previous literature, we find that the buyer’s lack of commitment reduces

the investment levels induced below efficiency. To the contrary, we showed that when the buyer

can commit to contracts, introducing sequentiality raises investment over the efficient level, which

becomes relevant if the objective is to reduce future expenditures.

From a theoretical point of view we obtain two results: complementarity between projects is

determined endogenously in the model and the cost-minimizing contract introduces memory when

the buyer can pre-commit. In the first case, mechanisms that give more advantage to the first

period winner at the last procurement provide more investment incentives, and therefore, more

complementarity among tasks. The extreme case is the following: the buyer can specify rules so

that ex ante substitutes projects become complements endogenously. With respect to the second

point, in a sequential-procurement setting, the full commitment solution introduces memory in the

contract, expressed in an advantage gap granted to the first period winner at the last procurement.

This advantage decreases with the number of competitors but never disappears. Moreover, it is

optimal even when investment chances are not allowed since the buyer can distribute incentives

inter-temporally in a better way than in the two-independent-contracts solution.

We showed that, in a context of full commitment, the cost minimizing and efficient investment

levels can achieved regardless of the observability of this variable. This can be done by setting

in both cases (observable and non-observable) the corresponding optimal mechanism derived when

investment can be observed. This result states that there is no need in observing the investment car-

ried out by the first period winner: providing the right incentives will lead to the correct investment

levels. This issue takes especial relevance when monitoring investment is expensive.

Finally, it could be useful that institutions that make use periodically of procurement auctions

6This dominates a force with the opposite sign: as a mechanism becomes less advantageous, a bigger invest is

needed to have a good probability of winning
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establish dynamic contracts in order to reduce costs. If they can credibly commit to these type of

contracts, investment levels above efficiency can be achieved within an optimal rule. All together,

sequentiality and commitment, will lead to lower expected expenditures because of inter-temporal

distribution of incentives and distributional upgrades respectively. To conclude, the essential message

of this paper is that, in a context of dynamic procurements, mechanisms play a investment-incentive

role which can be used by the buyer in order to reduce expected costs. As a consequence, in setting

the appropriate incentives, these institutions can lower their expected expenditures when compared

to static contracts.
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9. Appendix A: Proofs

Example ??: Assume that F (·) is a concave twice differentiable distribution. Define G(c, 0) =

F (c)η, 0 < η < 1 and G(c, I) = 1 − (1 − G(c, 0))γI+1, γ > 0. It is straightforward that the first

inequality in assumption ?? is checked when I ′ = 0. Also, it is clear that

∂G

∂c
(c, I) = (γI + 1)(1 − G(c, 0))γI ∂G

∂c
(c, 0)

Now, setting 0 ≤ I ′ < I and c′ < c, simple algebra shows that the second inequality in assumption

?? is equivalent to

(1 − G(c, 0))γ(I−I′) < (1 − G(c′, 0))γ(I−I′)
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which is obviously true since c′ < c.

Assumption ?? holds since

∂2G

∂I2
(c, I) = −γ2(1 − G(c, 0))γI+1log2(1 − G(c, 0)) < 0

Assumption ?? holds since

∣∣∣∣∣
∂G

∂I
(c, I)

∣∣∣∣∣ = γ(1 − G(c, 0))γI+1|log(1 − G(c, 0))|

< γ(1 − G(c, 0))|log(1 − G(c, 0))| ∈ L1(IR)

It remains to show that c 7→ G(c,I)
∂G
∂c

(c,I)
is increasing in c. This is equivalent to

(
∂G

∂c
(c, I)

)2

− G(c, I)
∂2G

∂c2
(c, I) > 0

so, it suffices to show that ∂2G
∂c2 (c, I) < 0. Since

∂2G

∂c2
(c, I) = −(γI + 1)γI(1 − G(c, 0))γI−1

(
∂G

∂c
(c, 0)

)2

+ (γI + 1)(1 − G(c, 0))γI ∂2G

∂c2
(c, 0)

, η < 1, F ′′ ≤ 0 and

∂2G

∂c2
(c, 0) = η(η − 1)F η−2(c)(F ′(c))2 + ηF ′(c)η−1F ′′(c) < 0

the result follows.

�

Proof of Lemma ??:

(i) Multiplying the second inequality in assumption ?? by ∂G
∂c

(c, I)∂G
∂c

(c, I ′) and integrating with

respect to c between c′ and c̄ yields the inequality.

(ii) Integrating the same inequality in assumption ?? with respect to c′ between 0 and c yields the

result.

(iii) Combining (i) and (ii) we obtain

1 − G(c, I ′)

1 − G(c, I)
<

∂G
∂c

(c, I ′)
∂G
∂c

(c, I)
<

G(c, I ′)

G(c, I)
, for all I < I ′

so, G(c, I) < G(c, I ′) if I < I ′.

26



Proof Lemma ??: Only (i). Inequalities Π1
i,~I

(ci, ci) ≥ Π1
i,~I

(ci, c
′
i) and Π1

i,~I
(c′i, c

′
i) ≥ Π1

i,~I
(c′i, ci)

yield

Q1
i (c

′
i)(c

′
i − ci) ≤ Π1

i,~I
(ci, ci) − Π1

i,~I
(c′i, c

′
i) ≤ Q1

i (ci)(c
′
i − ci)

Without loss of generality, suppose c′i > ci. Therefore Q1
i (·) is non-increasing and

Q1
i (c

′
i) ≤

Π1
i,~I

(ci, ci) − Π1
i,~I

(c′i, c
′
i)

c′i − ci

≤ Q1
i (ci)

Taking the limit when c′i goes to ci, we obtain

dΠ1
i,~I

dci

(ci, ci) = −Q1
i (ci)

and, as a consequence,

Π1
i,~I

(c̄, c̄) − Π1
i,~I

(c, c) = −

c̄∫

c

Q1
i (c)dc

concluding the proof. For (ii), the reasoning is the same.

�

Proof Theorem ??: Assume that the buyer wants to induce an investment level I and that Γ(I)

is optimal for Po. Rearranging terms in (??), (??), (??) and using Lemma ?? we obtain:

T 2
w,I(c) = Π2

w,I(c̄, c̄) +

c̄∫

c

Q2
w,I(c)dc + cQ2

w,I(c) + Ψ(I) (28)

T 2
l,I,i(c) = Π2

l,I,i(c̄, c̄) +

c̄∫

c

Q2
l,I,i(c)dc + cQ2

l,I,i(c), i 6= w, i ∈ N (29)

T 1
i (c) = Π1

i,I(c̄, c̄) +

c̄∫

c

Q1
i (c)dc + cQ1

i (c) − βQ1
i (c

′
i)

∫

C

Π2
w,I(c, c)

∂G

∂c
(c, I)dc

−β[1 − Q1
i (c

′
i)]

∫

C

Π2
l,I,i(c, c)f(c)dc. (30)

Then, integrating by parts
∫

C

T 2
w,I(c)

∂G

∂c
(c, I)dc = Π2

w,I(c̄, c̄) +

∫

C

Q2
w,I(c)G(c, I)dc +

∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) (31)

∫

C

T 2
l,I,i(c)f(c)dc = Π2

l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc +

∫

C

cQ2
l,I,i(c)f(c)dc, i 6= w, i ∈ N (32)
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∫

C

T 1
i (c)f(c)dc = Π1

i,I(c̄, c̄) +

∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc − βQ1

i

∫

C

Π2
w,I(c, c)

∂G

∂c
(c, I)dc

−β[1 − Q1
i ]

∫

C

Π2
l,I,i(c, c)f(c)dc. (33)

with Q1
i =

∫
C

Q1
i (c)f(c)dc (observe that

n∑
i=1

Q1
i = 1).

Replacing this last expressions in (??) yields a procurement cost of

C =

n∑

i=1


Π1

i,I(c̄, c̄) +

∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc


− β


Π2

w,I(c̄, c̄) +

∫

C

Q2
w,I(c, c)G(c, I)dc




−β

n∑

i=1



Π2
l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc



 +

n∑

i=1

Q1
i



Π2
l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc





+β



Π2
w,I(c̄, c̄) +

∫

C

Q2
w,I(c)G(c, I)dc



 + β

∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + βΨ(I)

+β
∑

i6=w


Π2

l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc


 + β

∑

i6=w

∫

C

cQ2
l,I,i(c)f(c)dc (34)

Since the second and fifth term cancel each other we get

C =

n∑

i=1


Π1

i,I(c̄, c̄) +

∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc




+β




∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) +

∑

i6=w

∫

C

cQ2
l,I,i(c)f(c)dc





−β

n∑

i=1



Π2
l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc



 + β
∑

i6=w



Π2
l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc





+

n∑

i=1

Q1
i


Π2

l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc


 (35)

Consider the last term in the above expression. Define

U2
l,i =

∫

C

Π2
l,I,i(c, c)f(c)dc = Π2

l,I,i(c̄, c̄) +

∫

C

Q2
l,I,i(c)F (c)dc

that is, the expected utility for player i at t = 2 conditional on being a first-period loser. At the

optimum, it must be that Q1
i , Q

1
j > 0 ⇒ U2

l,i = U2
l,j for all i 6= j, i, j ∈ N . Suppose this is not true,
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then, there are i 6= j, i, j ∈ N\{w} such that, for instance, U2
l,i > U2

l,j and Q1
i , Q

1
j > 0. Define

q̃1
k(·) =





q1
k(·) k 6= j, i.

q1
j (·) + q1

i (·) k = j.

0 k = i.

that induces the family of expected probabilities (Q̃1
i (·); i = 1, ..., n). It is easy to see that Q̃1

i (c) is not

increasing in c for all i ∈ N . For all k 6= i, j keep transfers unchanged. Then Π̃1
k,I(c, c) = Π1

k,I(c, c),

so incentive compatibility and participation constraints for this players are satisfied. For player i,

because Γ is feasible, Π1
i (c̄, c̄) ≥ β

∫
C

Π2
l,I,i(c)f(c)dc. Define T̃ 1

i (c̄) such that Π̃1
i,I(c̄, c̄) = Π1

i,I(c̄, c̄)

and compute transfers according to Lemma ??. We obtain Π̃1
i,I(c, c) = Π̃1

i,I(c̄, c̄), ∀c and so all re-

strictions are fulfilled. Finally, for player j define T̃ 1
j (c̄) so Π̃1

j,I(c, c) = Π̃1
j,I(c̄, c̄) holds and calculate

transfers using the same lemma. As a consequence, no restriction is violated for this competitor.

Henceforth, this new mechanism Γ̃ is feasible (it is direct that probabilities sum one). Moreover,

since
n∑

i=1

Q̃1
i (c) =

n∑
i=1

Q1
i (c) for all c and

n∑
i=1

Π̃1
i,I(c̄, c̄) =

n∑
i=1

Π1
i,I(c̄, c̄) under Γ̃ the first term in C keeps

unaltered and the last one falls, a contradiction with Γ(I)’s optimality (the remaining terms are not

affected by this change). Thus, at the optimum, U2
l,i = Ul for all i 6= w.

This last result enables the buyer to pay attention only to mechanisms that satisfy

Q2
l,I,i(·) ≡ Q2

l,I(·)

T 2
l,I,i(·) ≡ T 2

l,I(·)

Therefore, total expected cost reduces to

C =
n∑

i=1


Π1

i,I(c̄, c̄) +

∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc




+β




∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) + (n − 1)

∫

C

cQ2
l,I(c)f(c)dc



 − βnUl + β(n − 1)Ul + Ul

=

n∑

i=1


Π1

i,I(c̄, c̄) +

∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc




+β



∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + Ψ(I) + (n − 1)

∫

C

cQ2
l,I(c)f(c)dc


 (36)

To conclude, observe that at the optimum

β

n∑

i=1

∫

C

Π2
l,I(c, c)f(c)dc = β

∑

i6=w

(
1 +

1

n − 1

)
Π2

l,I(c̄, c̄) +

∫

C

Q2
l,I(c)F (c)dc



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Now add and subtract the last and first term respectively. We obtain

C =

n∑

i=1



∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc


+

n∑

i=1


Π1

i,I(c̄, c̄) − β

∫

C

Π2
l,I(c, c)f(c)dc




+β

∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + βΨ(I) + β

n∑

i=1

Π2
l,I(c̄, c̄)

+
∑

i6=w




∫

C

cQ2
l,I(c)f(c)dc +

(
1 +

1

n − 1

)∫

C

Q2
l,I(c)F (c)dc



 (37)

Note that, in an optimal mechanism, T 2
l,I(c̄) will be set up such that Π2

l,I(c̄, c̄) = 0. On the other hand,

T 1
i,I(c̄) will be designed such that Π1

i,I(c̄, c̄) = β
∫
C

Π2
l,I(c, c)f(c)dc for all i ∈ N . As a consequence,

C =
n∑

i=1



∫

C

Q1
i (c)F (c)dc +

∫

C

cQ1
i (c)f(c)dc


+ βΨ(I)

+β




∫

C

cQ2
w,I(c)

∂G

∂c
(c, I)dc + (n − 1)

∫

C

cQ2
l,I(c)f(c)dc + n

∫

C

Q2
l,I(c)F (c)dc



 (38)

which can be written as

C =

∫

Cn

n∑

i=1

[
ci +

F (ci)

f(ci)

]
q1
i (c)fn(c)dc + βΨ(I)

+β

∫

Cn


cwq2

w,I(c) +
∑

i6=w

[
ci +

(
1 +

1

n − 1

)
F (ci)

f(ci)

]
q2
l,I,i(c)


 fn−1(c−w)

∂G

∂cw

(cw, I)dc(39)

Pointwise maximization yields the following rules

q1∗
i (c1, ..., cn) =

{
1 ci + F (ci)

f(ci)
< cj +

F (cj)
f(cj)

∀j 6= i

0 ∼

q2∗
w (cw, c−w) =

{
1 cw < g(ci) ∀i 6= w

0 ∼

q2∗
l,i(ci, c−i) =

{
1 g(ci) = min{cw, g(cj); ∀j 6= w}

0 ∼

with g(c) = c +
(
1 + 1

n−1

)
F (c)
f(c) . Finally, because this last function and c + F (c)

f(c) are increasing

(assumption ??), the expected probability functions in each period are non increasing. If transfers

are computed according to Lemma ??, the mechanism is incentive compatible and no participation

constraint is violated. Because this mechanism is optimal regardless of the investment level the

buyer may want to induce, it is also optimal for Po. This concludes the proof.
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Proof Theorem ??: Recall that under full commitment and investment observability the rules

defined by Γ∗ minimize the expected cost of both projects for any level of investment I ≥ 0 chosen

by the first period winner. Thus, in this case, to obtain the optimal level of investment for the

buyer, I∗, we replace the mentioned mechanism in the procurement cost expression and minimize

with respect to I. Remember that, at the optimum of this problem, the expected procurement cost

can be written as (see expression (??) in the proof of theorem ??)

C =

n∑

i=1




∫

C

cQ1∗
i (c)F ′(c)dc +

∫

C

Q1∗
i (c)F (c)dc



 + βΨ(I)

+β




∫

C

cQ2∗
w (c)

∂G

∂c
(c, I)dc + n

∫

C

Q2∗
l (c)F (c)dc + (n − 1)

∫

C

cQ2∗
l (c)f(c)dc





= K(Q1∗) + βT (Q2∗, I) + βΨ(I) (40)

with

K(Q1∗) =

∫

C

cQ1∗
i (c)F ′(c)dc +

∫

C

Q1∗
i (c)F (c)dc (41)

T (Q2∗, I) =

∫

C

cQ2∗
w (c)

∂G

∂c
(c, I)dc + n

∫

C

Q2∗
l (c)F (c)dc + (n − 1)

∫

C

cQ2∗
l (c)f(c)dc (42)

Since K(Q1∗) does not depend on investment we can only pay attention to T (Q2∗, I). Then, in order

to obtain the optimal investment level, the buyer solves

min
I≥0

T (Q2∗, I) + Ψ(I) (43)

It can be easily checked that

Q2∗
w (c) =

{
1 c ≤ g(c)

(1 − F (g−1(c)))n−1 ∼
(44)

Q2∗
l (c) =

{
0 c > g−1(c̄)

(1 − G(g(c), I))(1 − F (c))n−2 ∼
(45)

are the expected probabilities of winning the second project for a winner and any loser respectively,
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conditional on the report c. Then, integrating by parts,

∫

S

cQ2∗
w (c)

∂G

∂c
(c, I)dc =

g(c)∫

c

c
∂G

∂c
(c, I)dc +

c̄∫

g(c)

c[1 − F (g−1(c))]n−1 ∂G

∂c
(c, I)dc

= g(c)G(g(c), I) −

g(c)∫

c

G(c, I)dc + c̄[1 − F (g−1(c̄))]n−1 − g(c)G(g(c), I)

−

c̄∫

g(c)

[1 − F (g−1(c))]n−1G(c, I)dc

+(n − 1)

c̄∫

g(c)

c[1 − F (g−1(c))]n−2f(g−1(c))
G(c, I)

g′(g−1(c))
dc (46)

Using t = g−1(c) in the last integral we obtain

∫

S

cQ2∗
w (c)

∂G

∂c
(c, I)dc = c̄[1 − F (g−1(c̄))]n−1 −

g(c)∫

c

G(c, I)dc

−

c̄∫

g(c)

[1 − F (g−1(c))]n−1G(c, I)dc

+(n − 1)

g−1(c̄)∫

c

g(t)[1 − F (t)]n−2f(t)G(g(t), I)dt (47)

and replacing g(c) = c +
(
1 + 1

n−1

)
F (c)
f(c) in the same term we get

∫

S

cQ2∗
w (c)

∂G

∂c
(c, I)dc = c̄[1 − F (g−1(c̄))]n−1 −

∫

C

[1 − F (g−1(c))]n−1G(c, I)dc

+(n − 1)

g−1(c̄)∫

c

c[1 − F (c)]n−2f(c)G(g(c), I)dc

+n

g−1(c̄)∫

c

[1 − F (c)]n−2G(g(c), I)F (c)dc (48)

Also, we have that

n

∫

C

Q2∗
l (c)Fl(c)dc = n

g−1(c̄)∫

c

[1 − F (c)]n−2[1 − G(g(c), I)]F (c)dc
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(n − 1)

∫

C

cQ2∗
l (c)f(c)dc = (n − 1)

g−1(c̄)∫

c

c[1 − F (c)]n−2[1 − G(g(c), I)]f(c)dc

Therefore

T (Q2∗, I) = c̄[1 − F (g−1(c̄))]n−1 −

∫

C

[1 − F (g−1(c))]n−1G(c, I)dc

+n

g−1(c̄)∫

c

[1 − F (c)]n−2F (c)dc + (n − 1)

g−1(c̄)∫

c

c[1 − F (c)]n−2f(c)dc (49)

Only the second term of the last expression depends on I, so the level of investment that minimizes

the expected cost under full observability and commitment is the solution to

max
I≥0

∫

C

[1 − F (g−1(c))]n−1G(c, I)dc − Ψ(I)

�

Proof Proposition ??.

Since (Γ∗, I∗), defined by expressions (??), (??) and (??), does not depend on the level of

investment I, the rules in Γ∗ are feasible when the investment level is not observable. When the

winner of the first procurement faces the rules in Γ∗, he decides his level of investment by solving

max
I≥0

∫

C

Π2
w(c, c)

∂G

∂c
(c, I)dc − Ψ(I)

Since
∫
C

Π2∗
w (c)∂G

∂c
(c, I)dc = T 2∗

w (c̄) − c̄Q2∗
w (c̄) +

∫
C

Q2∗
w (c)G(c, I)dc − Ψ(I), this is equivalent to solve

max
I≥0

∫

C

Q2∗
w (c)G(c, I)dc − Ψ(I)

and using the definition of Q2∗
w (·), this is equivalent to solve

max
I≥0

∫

S

[1 − F (g−1(c))]n−1G(c, I)dc − Ψ(I)

Since I∗ satisfies the same optimization problem, we conclude that C(Γ∗
no, I

∗
no) is incentive com-

patible, and therefore feasible for the non-observable case.

It is obvious that C(Γ∗, I∗) ≤ C(Γ∗
no, I

∗
no), so the feasibility of (Γ∗, I∗) for the non-observable case

implies that C(Γ∗
no, I

∗
no) = C(Γ∗, I∗).

�
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Proof Proposition ??:

Suppose the first period winner had invested an amount I. It is easy to see that the second

procurement expected cost corresponds to

C2(I) =

∫

Cn




(

cw +
G(cw, I)
∂G
∂c

(cw, I)

)
q2
w,I(c) +

∑

j 6=w

(
cj,l +

F (cj,l)

f(cj,l)

)
q2
j,l(c)



 fn−1(c−w)
∂G

∂c
(cw, I)dc (50)

Therefore, the second period cost-minimizing mechanism, call it Γ̂2(I), is defined by

q̂2
w,I(cw, c−w) =





1 cw + G(cw,I)

∂G
∂c

(cw,I)
) < min

i6=w

{
ci + F (ci)

f(ci)

}

0 ∼

q̂2
l,I,i(ci, c−i) =

{
1 ci + F (ci)

f(ci)
< min

{
cw + G(cw,I)

∂G
∂c

(cw,I)
), cj +

F (cj)
f(cj)

∣∣∣ j 6= i, w
}

0 ∼

This mechanism is incentive compatible due to the regularity conditions imposed in assumption ??.

Anticipating that the selection of Γ̂2(I), a first period winner will solve

max
I≥0

∫

C

Q̂2
w,I(cw)G(cw , I)dcw − Ψ(I)

with Q̂2
w,I(c) =

∫

Cn−1

q̂2
w,I(cw, I)fn−1(c−w)dc−w. If we define h(c, I) = c+ G(c,I)

∂G
∂c

(c,I)
and g1(c) = c+ F (c)

f(c)

we have that q̂2
w,I(cw, c−w) = 1 ⇔ g−1

1 (h(c, I)) < ci, ∀i 6= w.

Because of assumption ??, g−1
1 (·) exists, and because of Lemma ??, h(·, I) > g(·), thus g−1

1 (h(c, I)) >

c for all c > 0. Hence, we obtain

Q̂2
w,I(c) =

{
(1 − F (g−1

1 (h(c, I))))n−1 g−1
1 (h(c, I)) < c̄

0 ∼

and as a direct consequence

∫

C

Q̂2
w,I(c)G(c, I)dc − Ψ(I) =

∫

C

[1 − F (g−1
1 (h(c, I)))]n−1G(c, I)dc − Ψ(I)

Therefore, in absence of investment observability and buyer’s commitment, the level of investment

carried out by the first period winner, Î, is the solution to

max
I≥0

∫

S

[1 − F (g−1
1 (h(c, I)))]n−1G(c, I)dc − Ψ(I)

�
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Proof Proposition ??: Remember the function

V (I) =

∫

C

[1 − F (g−1
1 (h(c, I)))]n−1G(c, I)dc − Ψ(I)

Define

L(I) =

∫

C

[1 − F (g−1
1 (h(c, I)))]n−1 ∂G

∂I
(c, I)dc − Ψ′(I)

It is continuous because of: (i) [1 − F (g−1
1 (h(c, I)))]n−1 ∂G

∂I
(c, I) is continuous in I for each c and,

(ii) ∣∣∣∣∣[1 − F (g−1
1 (h(c, I)))]n−1 ∂G

∂I
(c, I)

∣∣∣∣∣ <
∂G

∂I
(c, I) < f(c) ∈ L1(IR)

thanks to assumption ?? (Dominated Convergence Theorem in L1(IR)). Also, L(·) is decreasing

because of assumptions ??, ?? and since [1 − F (g−1
1 (h(c, I)))]n−1 decreases with I. On the other

hand, condition (??), that is

lim
I→∞

L(I) =

∫

C

[1 − F (g−1
1 (h(c, I))]n−1 ∂G

∂I
(c, I)dc − Ψ′(I)

ensures the existence of Ĩ such that ∀I > Ĩ, L(I) < 0.

Suppose that V (·) is one of type 1. Consider the following figure:

A

B

C

0

G F

D

Q I

Q w
I

w

I

I

It s clear that there is no equilibrium off the diagonal {(I, Q̂w,I)| I ∈ [0, Ĩ]}: Given I fixed, the

buyer has incentive to impose Γ̂2(I) that induces Q̂2
w,I(·). In the figure, the buyer prefers points C

and G over A and F, respectively.
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Points like (I, Q̂w,I(·)) with 0 ≤ I ≤ Î can’t be equilibria as well: In the figure, the first period

winner prefers C over B because the former gives more utility (recall that in this zone V (·) increases

with I). On the other side, given C’s investment level, the first period winner prefers A: if Ī > ¯̄I

then Uw(I | ¯̄I) > Uw(I | Ī). Transitivity ensures that A is preferred over B, hence, the winner has

an incentive to deviate.

The point (Î , Q̂w,Î) is neither an equilibrium: remember that Î satisfies V (Î) = 0 so

∂Uw

∂I
(I | Î)

∣∣∣
I=Î

> 0

This occurs since in Uw the negative effect due to [1 − F (g−1
1 (h(I, c)))]n−1 is fixed, which does not

happen with V (·). Therefore, the first period winner would like to invest more.

As L(Î) = ∂Uw

∂I
(I | Î)

∣∣∣
I=Î

> 0 and L(I) < 0 if I > Ĩ, because of L(·)’s continuity and mono-

tonicity, there exists a unique
ˆ̂
I ∈ (Î , Ĩ) such that

L(
ˆ̂
I) =

∂Uw

∂I
(I |

ˆ̂
I)
∣∣∣
I=

ˆ̂
I

= 0

To see that
ˆ̂
I is a maximum, note that for each Ī fixed, the function Uw(I | Ī) is strictly

concave in I (assumption ??). Taking Ī =
ˆ̂
I, we conclude that

ˆ̂
I is a maximum since it verifies

∂Uw

∂I
(I |

ˆ̂
I)
∣∣∣
I=

ˆ̂
I

= 0. Then, given the mechanism Q̂
w,

ˆ̂
I
(·), the winner has the incentive to invest

ˆ̂
I,

that is, we’ve proved that (
ˆ̂
I, Q̂

w,
ˆ̂
I
(·)) is the unique pure strategy equilibrium (clearly, the buyer has

as dominant strategy to choose mechanisms over the diagonal corresponding to the investment level

carried out).

If V (·) is belongs to the second class, along the diagonal (I, Q̂w,I(·)) this function decreases and,

as a direct consequence, the investment level induced under non-commitment and observability, Î,

satisfies Î = 0. Thus, we can no longer ensure the existence of a point Î such that L(Î) > 0, which

was the main argument to show the existence of
ˆ̂
I. Therefore, we have two cases:

(i) Exists Î ≥ 0 such that L(Î) > 0. In this case the existence and uniqueness of
ˆ̂
I is ensured

using the same arguments as before. Also we have Î <
ˆ̂
I because L(·) is decreasing.

(ii) There is no I > 0 such that L(I) = 0. Because of (??), continuity and monotonicity of

L(·) (decreasing), it must be that L(I) < 0 if I > 0, hence, L(0) ≤ 0. In this case (0, Q̂w,0(·)) is

an equilibrium: when the winner makes no investment, the buyer has no incentive to deviate from

Q̂w,0(·). On the other side, when facing this last mechanism, the first period winner has no incentive

to invest because his marginal utility under this mechanism, L(0), is always negative. It is unique

because (i) L(I) < 0 if I > 0, in other words, for every I > 0 the first period winner has the incentive

to invest a lower level that I and, (ii) there are no equilibria off the diagonal. This concludes the

proof.
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Proof Proposition ??: Recall the function

V (I) =

∫

C

[1 − F (g−1
1 (h(c, I)))]n−1G(c, I)dc − Ψ(I)

Necessary conditions under which the first inequality becomes equality were exposed in Proposi-

tion ??’s proof. Therefore, let’s concentrate on the interesting case, that is, when V (·) is of type 1.

In this setting, strict inequality holds thanks to the previous proposition. It remains to show that
ˆ̂
I < I∗. Remember that I∗ is the solution to

max
I≥0

∫

C

[1 − F (g−1(c))]n−1G(c, I)dc − Ψ(I)

whose first order condition is

(FOC) :

∫

C

[1 − F (g−1(c))]
∂G

∂I
(c, I∗)dc − Ψ′(I∗) = 0

(we used assumption ?? and Dominated Convergence Theorem). From Proposition ??,
ˆ̂
I satisfies

L(
ˆ̂
I) =

∫

C

[1 − F (g−1
1 (h(c,

ˆ̂
I)))]n−1 ∂G

∂I
(c,

ˆ̂
I)dc − Ψ′(

ˆ̂
I) = 0

As h(c, I) > c ∀c ∈ S, we have g−1
1 (h(c, I)) > g−1

1 (c), therefore

0 = L(
ˆ̂
I) =

∫

C

[1−F (g−1
1 (h(c,

ˆ̂
I)))]n−1 ∂G

∂I
(c,

ˆ̂
I)dc−Ψ′(

ˆ̂
I) <

∫

C

[1−F (g−1
1 (c))]n−1 ∂G

∂I
(c,

ˆ̂
I)dc−Ψ′(

ˆ̂
I)

Observing that g−1(c) < g−1
1 (c) ∀c ∈ S (because g2(·) = c +

(
1 + 1

n−1

)
F (c)
f(c) > c + F (c)

f(c) = g1(·) and

these are increasing functions) we obtain

0 <

∫

C

[1 − F (g−1(c))]n−1 ∂G

∂I
(c,

ˆ̂
I)dc − Ψ′(

ˆ̂
I)

Since

I 7→

∫

C

[1 − F (g−1(c))]n−1 ∂G

∂I
(c, I)dc − Ψ′(I)

is continuous and decreasing (consequence of assumption ??, assumption ?? and Dominated Con-

vergence Theorem), and I∗ satisfies (FOC), it must be that
ˆ̂
I < I∗, concluding the proof.

�
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Proof Proposition ??: Ie solves

min
I≥0

C(Γe, I)

with

C(Γe, I) = n

∫

C

c[1 − F (c)]n−1f(c)dc + β

∫

C

c[1 − F (c)]n−1 ∂G

∂c
(c, I)dc

+β(n − 1)

∫

C

c[1 − F (c)]n−2[1 − G(c, I)]f(c)dc + βΨ(I) (51)

Then Ie is the solution to

min
I≥0

∫

C

c[1 − F (c)]n−1 ∂G

∂c
(c, I)dc + (n − 1)

∫

C

c[1 − F (c)]n−2[1 − G(c, I)]f(c)dc + Ψ(I) (52)

Integrating by parts,

∫

C

c[1 − F (c)]n−1 ∂G

∂c
(c, I)dc = c[1 − F (c)]n−1 ∂G

∂c
(c, I)

∣∣∣∣∣

c̄

c

+ (n − 1)

∫

C

c[1 − F (c)]n−2f(c)G(c, I)dc

−

∫

C

[1 − F (c)]n−1G(c, I)dc (53)

The first term vanishes. Replacing this expression in the problem just mentioned we obtain

min
I≥0

∫

C

c[1 − F (c)]n−2f(c)dc −

∫

C

[1 − F (c)]n−1G(c, I)dc + Ψ(I)

and because the first term does not depends on I we conclude that Ie is the solution to

max
I≥0

∫

C

[1 − F (c)]n−1G(c, I)dc − Ψ(I)

concluding the first part. For the last one, recall that under a second price sealed bid auction there are

no incentive compatibility problems since truth-telling is a dominant strategy. Because each project

is assigned to the least-cost competitor, in the second period the expected probability function for

the first period winner is Q2,e
w (c) = [1 − F (c)]n−1. Therefore, if the buyer is full committed and

imposes two second price sealed bid auctions we will achieve: (i) Efficiency, in terms of giving the

project to the competitor with the lowest cost, (ii) Ie, if investment is observable (the mechanism

designer will solves the above problem). If it is not observable, the first period winner will solve

max
I≥0

∫

C

Q2,e
w (c)G(c, I)dc − Ψ(I) =

∫

C

[1 − F (c)]n−1G(c, I)dc − Ψ(I)

and, as a consequence, Ie will be selected as well. Therefore, Ie is achieved in a context of full

commitment regardless of investment observability.
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Proof Proposition ??: We only need to show that
ˆ̂
I < Ie < I∗. Recall that I∗ solves

max
I≥0

∫

C

[1 − F (g−1(c))]n−1G(c, I)dc − Ψ(I)

On the other hand, the efficient mechanism verifies Q2,e
w (c) = [1−F (c)]n−1. It is clear that Q2∗

w (c) =

[1− F (g−1(c))]n−1 > Q2,e
w (c) if c 6= c, that is, the cost minimizing mechanism gives more advantage

to the first period winner at t = 2 than the efficient one. When facing a mechanism Q2
w(·), the first

order condition derived by the first period winner is

∫

C

Q2
w(c)

∂G

∂I
(c, I)dc − Ψ′(I) = 0

Because the function

I 7→

∫

C

Q2
w(c)

∂G

∂I
(c, I)dc − Ψ′(I)

is decreasing (assumption ?? and assumption ??), the fact that Q2∗
w (c) > Q2,e

w (c) implies Ie < I∗.

To conclude we must prove that
ˆ̂
I < Ie. Recall that

ˆ̂
I satisfies

L(
ˆ̂
I) =

∫

C

[1 − F (g−1
1 (h(c,

ˆ̂
I)))]n−1 ∂G

∂I
(c,

ˆ̂
I)dc − Ψ′(I) = 0

Because h(c, I) > g1(c) ∀c ∈ S and g1(·) is increasing, we have that

L(I) =

∫

C

[1 − F (g−1
1 (h(c, I)))]n−1 ∂G

∂I
(c, I)dc − Ψ′(I) <

∫

C

[1 − F (c)]
∂G

∂I
(c, I)dc − Ψ′(I)

The function

T (I) =

∫

C

[1 − F (c)]n−1 ∂G

∂I
(c, I)dc − Ψ′(I)

satisfies T (Ie) = 0 and it is decreasing (assumption ??). Because
ˆ̂
I satisfies L(

ˆ̂
I) = 0, it must be

that
ˆ̂
I < Ie, concluding the proof.

�

Proof Proposition ??: For any investment level I, total expected costs corresponds to

C(I) =

∫

C

∫

C




∑

i=1,2

(ci +
F (ci)

F ′(ci)
)q1

i (c1, c2)



 f(c1)f(c2)dc1dc2
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+β

∫

C

∫

C

[
cwq2

w,I(cw, cl) +

(
cl + 2

F (cl)

f(cl)

)
q2
l (cw, cl)

]
∂G

∂cw

(cw, I)f(cl)dcwdcl + βΨ(I)

and the optimal second period rule is given by

q2
w,I(cw, cl) =

{
1 cw < cl + 2F (cl)

f(cl)

0 ∼

Define g2(c) = c + 2F (c)
f(c) and consider the following incentive compatible mechanism:

q̃2
w,I(cw, cl) =

{
1 cw < g(cl)

0 ∼
(54)

with g(·) an increasing function. Using this mechanism, the second period expected cost can be

written as

C2(I) =

∫

C

f(cl)



∫

C

h(cl, cw)
∂G

∂cw

(cw, I)dcw


 dcl

with

h(cl, cw) =

{
g2(cl) g(cl) < cw,I

cw ∼

Therefore, under this mechanism, the buyer chooses the investment level by solving

min
I≥0

C2(I) + Ψ(I)

Now, given cl ∈ C

∫

C

h(cl, cw,I)
∂G

∂cw

(cw, I)dcw =

c̄∫

g(cl)

g2(cl)
∂G

∂cw

(cw, I)dcw +

g(cl)∫

c

cw

∂G

∂cw

(cw, I)dcw

But,

c̄∫

g(cl)

g2(cl)
∂G

∂c
(cw, I)dcw =

{
g2(cl)(1 − G(g(cl), I)) g(cl) < c̄

0 ∼

g(cl)∫

c

cw

∂G

∂cw

(cw, I)dcw =






g(cl)G(g(cl), I) −
g(cl)∫

c

G(cw, I)dcw g(cl) < c̄

c̄ −
∫
C

G(cw, I)dcw ∼

and, as a consequence,

∫

C

h(cl, cw,I)
∂G

∂cw

(cw, I)dcw =





g2(cl) + [g(cl) − g2(cl)]G(g(cl), I) −
g(cl)∫

c

G(cw, I)dcw g(cl) < c̄

c̄ −
∫
C

G(cw, I)dcw ∼
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Therefore, the buyer minimizes

g−1(c̄)∫

c

[g2(cl) + (g(cl) − g2(cl))G(g(cl), I)] f(cl)dcl −

g−1(c̄)∫

c

g(cl)∫

c

G(cw, I)f(cl)dcwdcl + Ψ(I)

+

c̄∫

g−1(c̄)


c̄ −

∫

C

G(cw, I)dcw


 f(c)dcl

which is equivalent to minimize

g−1(c̄)∫

c

(g(cl) − g2(cl))G(g(cl), I)f(cl)dcl −

g−1(c̄)∫

c

g(cl)∫

c

G(cw, I)f(cl)dcwdcl

−

c̄∫

g−1(c̄)

∫

C

G(cw, I)f(cl)dcwdcl + Ψ(I)

This last expression can be written as

g−1(c̄)∫

c

(g(cl) − g2(cl))G(g(cl), I)f(cl)dcl −

∫

C




min{g(cl),c̄}∫

c

G(cw, I)dcw


 f(cl)dcl + Ψ(I) (55)

Define

H(I) =

∫

C




min{g(cl),c̄}∫

c

G(cw , I)dcw


 f(cl)dcl

Then, the buyer solves

max
I≥0

H(I) − Ψ(I) −

g−1(c̄)∫

c

(g(cl) − g2(cl))G(g(cl), I)f(cl)dcl (56)

We denote the solution to this problem Ĩb. Also note that

min{c̄,g(cl)}∫

c

G(cw, I)dcw =





g(cl)∫
c

G(cw, I)dcw cl < g−1(c̄)

∫
C

G(cw, I)dcw ∼
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and therefore

H(I) =

∫

C




min{c̄,g(cl)}∫

c

G(cw, I)dcw


 f(cl)dcl

=

g−1(c̄)∫

c




g(cl)∫

c

G(cw , I)dcw


 f(cl)dcl + [1 − F (g−1(c̄))]

∫

C

G(cw , I)dcw (57)

Integrating by parts,

g−1(c̄)∫

c




g(cl)∫

c

G(cw, I)dcw


 f(cl)dcl = F (g−1(c̄))

∫

C

G(cw, I)dcw −

g−1(c̄)∫

c

F (cl)G(g(cl), I)g′(cl)dcl

which leads to

H(I) =

∫

C

G(c, I)dc −

g−1

2
(c̄)∫

c

F (c)G(g2(c), I)g′2(c)dc (58)

When facing the mechanism defined by (??) the first period winner solves

max
I≥0

∫

S

Q̃2
w(c)G(c, I)dc − Ψ(I)

with

Q̃2
w(c) =

∫

C

q̃2
w(c, cl)f(cl)dcl =






c̄∫

g−1(c)

f(cl)dcl = 1 − F (g−1(c)), g(c) < c

c̄∫
c

f(cl)dcl = 1 ∼

As,

∫

S

Q̃2
w(c)G(c, I)dc =

g(c)∫

c

Q̃2
w(c)G(c, I)dc +

c̄∫

g(c)

Q̃2
w(c)G(c, I)dc

=

g(c)∫

c

G(c, I)dc +

c̄∫

g(c)

[1 − F (g−1(c))]G(c, I)dc

=

∫

C

G(c, I)dc −

c̄∫

g(c)

F (g−1(c))G(c, I)dc (59)
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and using t = g2(c), the first period winner solves

max
I≥0

H(I) − Ψ(I) =

∫

C

G(c, I)dc −

g−1(c̄)∫

c

F (t))G(g(t), I)g′(t)dt − Ψ(I) (60)

Call the solution to this problem Ĩw. Finally, assume that the first order conditions for (??) and

(??) are satisfied. As a consequence, the following holds:

H′(Ĩb) − Ψ′(Ĩb) +

g−1(c̄)∫

c

(g2(cl) − g(cl))
∂G

∂I
(g(cl), Ĩb)f(cl)dcl = 0 (61)

H′(Ĩw) − Ψ′(Ĩw) = 0 (62)

Assumptions ?? and ?? ensure that H′(·) and −Ψ′(·) are decreasing. Since g2 ≥ g with strict

inequality on a set of positive measure, we conclude that

Ĩw < Ĩb

using the fact that ∂2G
∂I2 < 0.

�

10. Appendix B: History-Dependent Mechanisms

In this section we prove that the buyer cannot do better by specifying contracts in which the second

period rules and investment levels differ according to the first period winner’s identity.

Assume that investment is observable. At t = 1 denote firms by subscripts i ∈ N and define

analogously q1
i (c′), Q1

i (c
′
i), t1i (c

′) and T 1
i (c′i), i ∈ N .

At t = 2 we allow the second period mechanisms to depend on the winner’s identity. Consider

the following history: (history i,Ii)“firm i was the first period winner and invested an amount Ii”,

i ∈ N . In this setting we denote firm i by the subscript i, w, Ii at t = 2, and any other competitor

j 6= i will be denoted by subscripts j, l, i7 which means that j is a loser under history i,Ii, i 6= j,

i, j ∈ N (now the identity of a loser is the first letter in the subscript, not as in the model presented

in the paper). Conditional on this history, we define q2
i,w,Ii

(c′) as the probability that firm i wins the

second project conditional on the report vector c′ (q2
j,l,i(c

′) is defined analogously, j 6= i, i, j ∈ N).

Transfers are defined in the same way, i.e., they depend on the realized history and on player’s

reports. Now we are able to define a mechanism in the case of investment observability:

7Actually the correct subscript would be j, l, Ii, i because it depends explicitly on the realized history. Nevertheless

for notational convenience will be reduced to j, l, i
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In this setting, a mechanism Γ is a family of functions defined in Cn

Γ = {(q1
i (·), t1i (·))| i ∈ N} ∪




⋃

history j,Ij

{(q2
i (·), t2i (·))| i = (j, w, I), (k, l, j), j 6= k, k ∈ N}




such that

(i) For all i ∈ N , 0 ≤ q1
i (·) ≤ 1 and

n∑
i=1

q1
i (c) = 1, ∀ c ∈ Cn.

(ii) For every history i,Ii, i ∈ N , Ii ≥ 0, 0 ≤ q2
i,w,Ii

(·) ≤ 1, 0 ≤ q2
j,l,i(·) ≤ 1 ∀ j 6= i, j ∈ N and

q2
i,w,Ii

(c) +
n∑

j 6=i

q2
j,l,i(c) = 1, ∀ c ∈ Cn.

That is, it is a contingent plan of transfers and probabilities, which depend on every possible

history. Probabilities must sum 1 because the buyer is compelled to procure the two projects.

With the corresponding notational changes consider the one-variable functions Q2
i,w,Ii

(c′i), Q2
j,l,i(c

′
j)

T 2
i,w,Ii

(c′i), T 2
j,l,i(c

′
i), Π2

i,w,Ii
(ci, c

′
i) and Π2

j,l,i(cj , c
′
j) for firm j 6= i, j ∈ N . This last two satisfy

Π2
i,w,Ii

(ci, c
′
i) = T 2

i,w,Ii
(c′i) − ciQ

2
i,w,Ii

(c′i) − Ψ(Ii), i ∈ N. (63)

Π2
j,l,i(cj , c

′
j) = T 2

j,l,i(c
′
j) − cjQ

2
j,l,i(c

′
j), i 6= j, i, j ∈ N. (64)

Set Q1
i,j(c

′
i) as the expected probability that player j wins conditional on player i’s report c′i.

Corresponds to

Q1
i,j(c

′
i) =

∫

Cn−1

q1
j (c′i, c−i)f

n−1(c−i)dc−i (65)

and it is clear that
∫

C

Q1
i,j(c

′
i)dc′i =

∫

Cn

q1
j (c)dc := Q1

j (66)

in other words, for firm i, the expected probability of being defeated by firm j is exactly the expected

probability that this firm wins the first procurement, i 6= j, i, j ∈ N .

Assume that the buyer wants to induce firm i to invest Ii ≥ 0. Define ~I = (I1, ..., In). We denote

by Π1
i,~I

(ci, c
′
i) the discounted expected utility at t = 1 for firm i with cost ci and reported cost c′i,

conditional on revealing real costs at t = 2 and on the investment profile ~I. It satisfies

Π1
i,~I

(ci, c
′
i) = T 1

i (c′i) − ciQ
1
i (c

′
i) + βQ1

i (c
′
i)

∫

C

Π2
i,w,Ii

(c, c)
∂G

∂c
(c, Ii)dc

+β
∑

j 6=i

Qi,j(c
′
i)

∫

C

Π2
i,l,j(c, c)f(c)dc. (67)
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Incentive compatibility is characterized by Lemma ?? with the corresponding notational changes.

Denote by C = C(Γ, ~I) the expected procurement cost when the buyer uses mechanism Γ and

wants to induce the investment profile ~I. It is clear that

C =
n∑

i=1

∫

C

T 1
i (c)f(c)dc + β

n∑

i=1

∫

C

Q1
i (c)f(c)dc



∫

C

T 2
i,w,Ii

(c)
∂G

∂c
(c, I)dc +

∑

j 6=i

∫

C

T 2
j,l,i(c)f(c)dc


 (68)

The following lemma is an expression for C under incentive compatible mechanisms:

Lemma: Suppose the buyer wants to induce an investment profile ~I = (I1, ..., In) using a

incentive compatible mechanism Γ. The expected procurement cost corresponds to

C =

n∑

i=1




∫

C

cQ1
i (c)f(c)dc +

∫

C

Q1
i (c)F (c)dc + Π1

i,~I
(c̄, c̄)





+β

n∑

i=1

Q1
i




∫

C

cQ2
i,w,Ii

(c)
∂G

∂c
(c, Ii)dc +

∑

j 6=i

∫

C

cQ2
j,l,i(c)f(c)dc + Ψ(Ii)



 (69)

Proof : Using Lemma ??, rearranging terms in (??), (??) (??), and integrating by parts in the last

expression, we obtain

T 2
i,w,Ii

(c) = cQ2
i,w,Ii

(c) +

c̄∫

c

Q2
i,w,Ii

(x)dx + Π2
i,w,Ii

(c̄, c̄) − Ψ(Ii) (70)

T 2
j,l,i(c) = cQ2

j,l,i(c) +

c̄∫

c

Q2
j,l,i(x)dx + Π2

j,l,i(c̄, c̄) (71)

T 1
i (c) = cQ1

i (c) +

c̄∫

c

Q1
i (x)dx + Π1

i,~I
(c̄, c̄) − βQ1

i (c)



∫

C

Q2
i,w,Ii

(c)G(c, Ii)dc + Π2
i,w,Ii

(c̄, c̄)




−β
∑

i6=j

Q1
i,j(c)



∫

C

Q2
i,l,j(c)F (c)dc + Π2

i,l,j(c̄, c̄)


 (72)

45



Replacing this terms in C we get

C =
n∑

i=1



∫

C

cQ1
i (c)f(c)dc +

∫

C

Q1
i (c)F (c)dc + Π1

i,~I
(c̄, c̄)




−β

n∑

i=1

∫

c

Q1
i (c)f(c)dc




∫

C

Q2
i,w,Ii

(c)G(c, Ii)dc + Π2
i,w,Ii

(c̄, c̄)





−β

n∑

i=1

∑

j 6=i

∫

C

Q1
i,j(c)f(c)dc




∫

C

Q2
i,l,j(c)F (c)dc + Π2

i,l,j(c̄, c̄)





+β

n∑

i=1

∫

C

Q1
i (c)f(c)dc



∫

C

cQ2
i,w,Ii

(c)
∂G

∂c
(c, Ii)dc




+β

n∑

i=1

∫

C

Q1
i (c)f(c)dc



∫

C

Q2
i,w,Ii

(c)G(c, Ii)dc + Π2
i,w,Ii

(c̄, c̄)




+β

n∑

i=1




∫

C

Q1
i (c)f(c)dc



Ψ(Ii)

+β

n∑

i=1

∫

C

Q1
i (c)f(c)dc

∑

j 6=i




∫

C

cQ2
j,l,i(c)f(c)dc





+β

n∑

i=1

∫

C

Q1
i (c)f(c)dc

∑

j 6=i



∫

C

Q2
j,l,i(c)F (c)dc + Π2

j,l,i(c̄, c̄)


 (73)

The first term correspond to the expected transfers standing at t = 1 and the rest consist of second

period payments. Recall that
∫
S

Qi,j(c)f(c)dc =
∫
S

Qj(c)f(c)dc = Q1
j , and with this the third and

eighth terms can be written as
n∑

i=1

∑
j 6=i

Q1
jai,j and

n∑
i=1

Q1
i

∑
j 6=i

aj,i respectively. Clearly they are equal,

so they cancel. The second and fifth expression cancel each other as well. Thus, the expected cost

reduces to

C =
n∑

i=1



∫

S

cQ1
i (c)f(c)dc +

∫

S

Q1
i (c)F (c)dc + Π1

i,~I
(c̄, c̄)




+β

n∑

i=1

Q1
i




∫

C

cQ2
i,w,Ii

(c)
∂G

∂c
(c, Ii)dc +

∑

j 6=i

∫

C

cQ2
j,l,i(c)f(c)dc + Ψ(Ii)



 (74)

concluding the proof.

�
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The next result states that the buyer may restrict to mechanisms that do not depend on the first

period winner’s identity.

Theorem (History i-independence): When the buyer is fully committed and investment is

observable, this agent may restrict mechanisms independent of the first period winner’s identity. In

other words, second period rules and the investment level he wishes to implement may not depend

on who was the first period winner. In this setting, when the buyer wants to induce an investment

level I, total expected cost C can be written as

C(I) =
n∑

i=1




∫

S

cQ1
i (c)f(c)dc +

∫

C

Q1
i (c)F (c)dc + Π1

i,I(c̄, c̄)





+β




∫

C

cQ2
w,I(c)

∂G

∂I
(c, I)dc +

∑

j 6=w

∫

C

cQ2
j,l(c)f(c)dc + Ψ(I)



 (75)

Moreover, the expected probability of winning the second project, as a function, is equal for all losers.

Proof : Assume that Γ∗(~I) is a cost-minimizer incentive compatible mechanism when the buyer

wants to implement an investment profile ~I = (I1, ..., In). We do not specify under which usual8

participation constraints this mechanism is optimal since the result is quite robust to this feature.

Therefore, suppose that that the buyer impose some of this constraints and that Γ∗(~I) satisfy them.

To begin with, two assertions:

(i) Exists i ∈ N and ǫ > 0 such that Q1
i (c) > 0 in (c, c + ǫ).

Ans: Suppose not. As Q1
i (·) is non increasing and non negative, it will be identically null in

C, hence, q1
i (·) = 0 a.e. in C for all i ∈ N , which contradicts feasibility. Then exists i such

that Q1
i =

∫
S

Q1
i (c)f(c)dc > 0.

(ii) Define

C2
i =

∫

C

cQ2
i,w,Ii

(c)
∂G

∂c
(c, Ii)dc +

∑

j 6=i

∫

C

cQ2
j,l,i(c)f(c)dc.

If (Q1∗
i (·); i = 1, ..., n) is the first period optimal rule, then Q1∗

i , Q1∗
j > 0 ⇒ C2

i = C2
j .

Ans: The expression C2
i =

∫
S

cQ2
i,w,Ii

(c)∂G
∂c

(c, Ii)dc +
∑
j 6=i

∫
S

cQ2
j,l,i(c)f(c)dc correspond to the

second period expected cost conditional on history i,Ii. First note that, Q1
i =

∫
S

Q1
i (c)f(c)dc

verifies Q1
i ≥ 0 and

∑
i

Q1
i = 1 (consequence of a feasible mechanism).

If exists i 6= j, i, j ∈ N , such that C2
i > C2

j , we can define the distribution

q̃1
k(·) =






q1
k(·) k 6= j, i.

q1
j (·) + q1

i (·) k = j.

0 k = i.

8By usual we mean participation constraints that involve player’s participation under any possible type.

47



that induces the family of expected probabilities (Q̃1
i (·); i = 1, ..., n). It is easy to see that

Q̃1
i (c) is not increasing in c for all i ∈ N . For all k 6= i, j keep transfers unchanged. Then

Π̃1
k,~I

(c, c) = Π1
k,~I

(c, c), so incentive compatibility and participation constraints for this players

are satisfied. For player i consider T̃ 1
i (c̄) such that Π̃1

i,~I
(c̄, c̄) = Π1

i,~I
(c̄, c̄) and compute transfers

according to Lemma ??. We obtain Π̃1
i,~I

(c, c) = Π̃1
i,~I

(c̄, c̄), ∀c and so all restrictions are fulfilled.

Finally, for player j define T̃ 1
j (c̄) so that Π̃1

i,~I
(c̄, c̄) = Π̃1

i,~I
(c̄, c̄) holds and calculate transfers

using the same lemma. As a consequence, no costraint is violated for competitor j. Henceforth,

this new mechanism Γ̃ is feasible (is direct that probabilities sum one). Moreover, because
n∑

i=1

Q̃1
i (c) =

n∑
i=1

Q1
i (c) for all c and

n∑
i=1

Π̃1
i,~I

(c̄, c̄) =
n∑

i=1

Π1
i,~I

(c̄, c̄), under Γ̃ the first term in C

remains unaltered and the second one falls, a contradiction with Γ∗(~I)’s optimality. Hence, at

the optimum, C2
i = C2, i ∈ N if Q1∗

i > 0.

A consequence of (i) and (ii) is that the mechanism designer may restrict simultaneously to

uniform investment profiles, that is, Ii = ... = In = I and, mechanisms such that

Q2
i,w,I(c) = Q2

w,I(c), T 2
i,w,I(c) = T 2

w,I(c)

Q2
j,l,i(c) = Q2

j,l(c), T 2
j,l,i(c) = T 2

j,l(c)

and, therefore, expected total cost reduces to

C(I) =

n∑

i=1




∫

S

cQ1
i (c)f(c)dc +

∫

C

Q1
i (c)F (c)dc + Π1

i,I(c̄, c̄)





+β



∫

C

cQ2
w,I(c)

∂G

∂I
(c, I)dc +

∑

j 6=w

∫

C

cQ2
j,l(c)f(c)dc + Ψ(I)




concluding the proof.
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