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Abstract

This paper studies revenue maximizing auctions when buyers’ outside options de-
pend on their private information. The set-up is very general and encompasses a large
number of potential applications. The main novel message of our analysis is that with
type-dependent non-participation payoffs, the revenue maximizing assignment of ob-
jects can crucially depend on the outside options that buyers face. Outside options can
therefore affect the degree of efficiency of revenue maximizing auctions. We show that
depending on the shape of outside options, sometimes an optimal mechanism will allo-
cate the objects in an ex-post efficient way, and other times, buyers will obtain objects
more often than it is efficient. Our characterization rings a bell of caution. Modeling
buyers’ outside options as being independent of their private information, is with loss of
generality and can lead to quite misleading intuitions. Our solution procedure can be
useful also in other models where type-dependent outside options arise endogenously,
because, for instance, buyers can collude or because there are competing sellers. Key-
words:  Optimal Multi Unit Auctions, Type Dependent Outside Options, Fxternalities,
Mechanism Design, Type-Dependent Outside Options: JEL D44, C7, C72.
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1. INTRODUCTION

This paper studies revenue maximizing allocation mechanisms for multiple objects in a
very general model that allows buyers’ outside payoffs to depend on their types. Objects
can be heterogeneous, and they can be simultaneously complements for some buyers and
substitutes for others. Buyers’ payoffs may depend on the entire allocation of the objects,
not merely on the ones they obtain, on their costs, which are private information, and on the
costs of their competitors. Therefore the auction outcome may affect buyers irrespectively
of whether they win any objects or not, and irrespectively of whether they participate in
the auction or not. Non-participation payoffs may then very well depend on their cost,
(type). Applications of this problem range from the allocation of positions in teams, to the
allocation of airport take-off and landing slots, privatization, advertising and many more.

We show that with type-dependent non-participation payoffs, a revenue maximizing
assignment of the objects can crucially depend on the outside options that buyers face.
Therefore, outside options can affect the degree of efficiency of revenue maximizing auctions.
Depending on the shape of outside payoffs, sometimes an optimal mechanism will allocate
the objects in an ez-post efficient way. An important insight of monopoly theory is that
a monopolist faces a trade-off between revenue maximization and efficiency, and sacrifices
efficiency to increase revenue by selling less than it is socially desirable. The monopolist in
this paper! does not always face this trade-off since a revenue maximizing allocation of the
goods can be ex-post efficient. However, our analysis also shows that sometimes a revenue
maximizing seller will sell “too much”compared to the socially desirable level. The second
lesson is that with type-dependent outside options a revenue maximizing monopolist may
induce inefficiencies of a different nature compared to the classical monopoly theory.

We now illustrate with a simple example how outside options can increase both revenue
and efficiency of revenue maximizing mechanisms when outside payoffs are type-dependent.
Suppose that a small company in Silicon Valley develops a valuable new technology. This
company does not have the necessary infrastructure to reap its benefits, so it is essentially
worthless for it. There is, however, a large firm, (say company A), that is willing to purchase
it. The value of the new technology to company A is given by 500,000 — 500, 000¢, where ¢
is private information and uniformly distributed on [0,1]. We assume that irrespective of its
cost realization, giving the technology to A maximizes the sum of consumer and producer
surplus. If company A does not get the technology and no-one else does either, A’s payoff is
zero. From Myerson (1981) or from Riley and Samuelson (1981), we know that the best that
the developer can do is to make a take-it-or leave-it offer to company A of $250,000. Then,
company A will get the invention only if its cost parameter is below % This maximizes
ex-ante expected revenue, which is $125, 000, but it is inefficient, because the developer is
stuck half the time with a worthless (for it) invention, whereas company A would generate

'Such a comparison is legitimate, since the seller in our model is a multiproduct monopolist who instead
of choosing revenue maximizing prices, is choosing revenue maximizing mechanisms.



non-negative payoff for all cost realizations.

Now suppose that the developer can make the invention publicly available by making it
open source. This possibility changes A’s outside options. The payoff of company A in case
of open-sourcing is given by 100,000 — 1,000,000c. If the developer considers threatening
company A, in case it drops out of the sale, which threat should it use? The answer is not
obvious since the developer does not know company A’s cost parameter, so it does not know
which alternative “hurts more.”? If A is very efficient, (c < %0), it would prefer the invention
to become open-source, instead of the seller keeping it, since 100,000 — 1,000,000c > 0,
whereas the reverse is true if ¢ > %. In this paper we show that the optimal threat is to tell
A that in the event it does not participate, the seller keeps the invention with probability
%, and makes it open source with probability % Faced with this lottery, then company A’s
expected outside payoff is 50,000 — 500, 000c. Then, as we show,? the best that the seller can
do is ask a price of $450,000. Firm A always(!) agrees to buy the invention at the asking
price of $450,000, since 500,000 — 500, 000¢ — 450, 000 = 50,000 — 500, 000c and hence its
payoff is (weakly) greater than its outside option. Thus, the open source option, even though
is never implemented, has an extraordinary effect on the revenue maximizing allocation. It
guarantees a higher expected revenue ($450,000), and makes the mechanism efficient. This
is one of the main economic messages of this paper: when outside options depend on the
buyers’ private information, the seller can increase both revenue and efficiency by designing
appropriate outside options. If the payoff from open sourcing did not depend on A’s cost
parameter, then the allocation of the invention at the optimal mechanism would have been
identical, and as inefficient, as in the case where open sourcing were not an option.* This
example highlights the crucial role of outside options on the degree of efficiency of revenue
maximizing mechanisms when outside payoffs are type-dependent.

Myerson (1981) studies revenue maximizing mechanisms of a single unit in an indepen-
dent private value environment, where each buyer’s outside option is a constant that is
independent from the outcome of the auction. This seminal contribution establishes that at
a revenue maximizing auction the seller gives the good to the buyer with the highest virtual
surplus, whenever this virtual surplus is above the seller’s valuation. Because a buyer’s
virtual surplus is equal to his valuation minus information rents, optimal auctions are inef-

2Both of these threats are credible. In case firm A does not participate in the sale, the seller is indifferent
between keeping the invention and making it open source, and since there is nothing else the seller can do
in that case, both these options are optimal.

3This example is, essentially, the one that is formally analyzed in section 5.2.

4If A’s payoff from open sourcing were independent of its type, say it were —$100, 000, then, from the
work of Jehiel, Moldovanu and Stacchetti (1996) we know that the developer by threatening company A to
make the invention open source, can extract payments even if company A does not get the technology, so
long as it does not become open source. In this case the optimal auction will have an entry fee of $100,000
and a take-it-or-leave-it offer of $250,000. Company A will get the new technology when its cost is below %
Now the expected revenue for the developer will be higher and it will be $225,000, but the optimal auction
is inefficient, since there is trade only half the time, exactly as in the case without the open sourcing option.



ficient, even when buyers are ex-ante symmetric.> Jehiel, Moldovanu and Stachetti (1996),
JMS’96, examine revenue maximizing mechanisms of a single object, where as in Myerson
(1981), each buyer’s outside option is a constant, but with the important difference that the
outside option depends on the allocation of the object. The new insight of JMS’96 is that
the seller increases revenue by choosing the appropriate outside options. In JMS’96 because
outside options are type-independent the revenue maximizing allocation of the good is never
affected by the outside options that buyers face. Only payments are affected. Therefore,
the kind of inefficiencies that appear in Myerson (1981) are still present. A more recent
paper with type-independent externalities is Aseff and Chade (2006).

In this paper we study revenue maximizing auctions when outside options can depend
on buyers’ types, and show that the revenue maximizing allocation of the goods crucially
depends on the shape of the outside options that buyers face. The reason for this is that
with type-dependent outside options the virtual surplus of an allocation is “modified” to
account for the shape of the outside options. The shape of the outside options, together
with the allocation mechanism determine the critical types, that is the types where the
participation constraints bind. The “modified virtual surplus” of an allocation can be equal
or strictly greater than its actual surplus. Depending on how the modified virtual surplus
of an allocation compares to its actual surplus, a revenue maximizing mechanism can be
ex-post efficient, as is the example in Section 5.2, or it may be “overselling” compared to
the ex-post efficient level, as in the example presented in Section 5.1.

The dependence of the “modified virtual surplus” on the allocation through the vector
of critical types makes the problem sometimes non-linear. Hence, a general, analytical
solution seems intractable. Because of the possible nonlinearities, this problem is similar to
Maskin and Riley (1984), who study revenue maximizing auctions with risk averse buyers.
Fortunately, here we are able to identify a large class of environments where the problem
becomes linear, as it is in Myerson (1981). In these cases, the vector of critical types does
not depend on the allocation that the seller chooses, because, (roughly), buyers’ outside
payoffs have extreme slopes. The analytical solutions of these cases show the possibilities of
efficiency and “overselling.” We choose to state these results as possibilities, rather then to
describe the complete list of cases where they would be true, because this seems like a very
long and tedious task. Whether efficiency, “overselling” or “underselling” occurs depends
on the vector of critical types. These features will be present also when revenue depends
non-linearly in p.

It is very important to stress that the virtual surplus is modified only when outside-
payoffs are type-dependent. Thus, overselling cannot occur when there are externalities,
(positive or negative), but the outside options are flat,® as is the case in JMS’96. Also the
presence of externalities is just one instance where outside options may be type-dependent,

This is because it is possible that the highest virtual surplus, (valuation minus information rents), is
below the seller’s valuation, whereas the highest valuation is above.
6This point is elaborated at the end of Section 6.1.



there can be many more, think for instance, a procurement setting where bidders have to
give up the possibility of undertaking other projects in order to participate in the current
auction.

Our model allows for an elegant description of a large number of allocation problems
because it allows for multiple heterogeneous goods, type-dependent outside options and
externalities; as well as for the goods to be simultaneously complements for some buyers,
and substitutes for others. We now list a few of the potential applications of our model.

e Allocation of rights to a new technology. Our analysis could offer useful insights on the
debate about how new technologies or ideas should be sold. In the example just discussed,
we saw the crucial role of the presence of the open source option on the efficiency properties
of the revenue maximizing mechanisms: it increased both revenue and efficiency. This is an
important area, since the way property rights are assigned on new ideas and technologies
does not only affect the way the particular ideas will be implemented in practice, but also
the incentives to produce new ones.

o Auctioning of advertisement slots on the internet, TV or radio. Airtime for advertise-
ments on TV and radio is often priced using conventional mechanisms. However, exploiting
the presence of externalities is not far from what we already observe in reality. In Germany
during the soccer world cup, advertisement slots were sold by category. For instance, a slot
was allocated only to brewing companies. Then a potential buyer knew a priori that if it
did not buy the slot, it will go to a competitor. Nowadays, companies like Yahoo! and
Google auction-off their advertising slots and are thinking of optimal ways to do so. Our
model fits very well many aspects of the problem these companies face: they are selling
many advertising slots that can be heterogeneous, some slots may be substitutes and some
complements of one another, and clearly buyers care about the slots that their competitors
obtain.

e Team formation. Our model can be used to study a type of procurement auction where
the buyer is an organization, (consulting firm, sports team), that wants to hire individuals
to perform a task as a team. The compensation that an individual requires depends on
who else will join the team. For instance, if individuals joining consist of gurus in the field,
someone may consider the experience of working with such people so important, that he
may be willing to participate with minimal compensation. On the other hand, if team
members are of very poor quality the compensation that he requires may be higher.”

e Optimal auction design with endogenous market structure. Our model captures sce-
narios of auctions with endogenous market structure and generalizes previous work by Dana
and Spier (1994), and Milgrom (1996).8

"These insights can be useful when one thinks about academic hiring. Clearly academics care a lot about
the quality of their colleagues in absolute sense, and also relatively, meaning how good is the match.

8Gale (1990) also comsiders a variation of this problem but because he imposes a very strong super-
additivity condition to the profit function, he shows that an optimal mechanism always gives all the “permits”
to at most one buyer, so the market structure is always a monopoly.



Other applications include firm take-overs,”? allocation of airport take-off and landing
slots, and optimal bundling. We finish with a historical application.

o A historical example. The praetorian guard realized the additional benefits of running
an auction when negative externalities are present. In the year 196 A.D. they killed the
emperor Pertinax and, making a break with “tradition,” decided not to hand over the title
to someone else for a fixed price, but to run an auction. Historians' cite the fact that there
was heavy overbidding, since participants were afraid that in case of not winning the auction,
they would be killed by the next emperor, since they would be potential conspirators. This
is an example of extreme negative externalities! The experiment was successful from the
point of view of the guard, since the auction generated very high revenue, but was not
repeated, probably since Didius Iulianus (the winner) lasted only 65 days as emperor and
was killed after that, making next bidders reluctant to participate in another auction of this
sort.

To summarize, our model is tractable, despite its generality, and has a very large num-
ber of potential applications. Our main message is that when outside options are type-
dependent the revenue maximizing assignment of the objects will depend on them. The
seller can then increase both revenue and efficiency by choosing the appropriate outside
options. This issue seems to be known to practitioners, as it is suggested by the design

of the UK spectrum auctions,'!

see for instance Klemperer (2004). Moreover, our solution
technique of analyzing type-dependent outside options can be useful in models where type-
dependent outside options arise endogenously, because buyers can collude or because there
are competing sellers.

Other papers that study optimal multi-unit auctions when private information is sin-
gle dimensional are Maskin and Riley (1989), who analyze the case of unit demands and
continuously divisible goods, Gale (1990) who analyzes the case of discrete goods and super-
additive valuations and, finally, Levin (1997) the case of complements. As in these papers,
uncertainty in our model is single dimensional and buyers are risk neutral, but we allow
for many goods, (that can be bundled any way the seller likes), multi-unit demands and
payoff functions that allow for complements, substitutes and externalities. A number of
papers on optimal multi-unit auctions model types as being multidimensional. With multi-
dimensional types the characterization of the optimum is extremely difficult. Significant
progress has been made, but no analytical solution, nor general algorithm is known. Impor-
tant contributions there are Armstrong (2000), Avery and Hendershott (2000) and Jehiel
and Moldovanu (2001). This paper is less general in the dimensionality of the types, but

9Externalities are of huge importance in firm take-overs: Recently (February 2004), Cingular bought
AT&T wireless for $41 billion after a bidding war with Vodafone. Some perceive that the big winner of
this sale will be Verizon even though it was not a participant in the auction (NY Times February 17, 2004
“Verizon Wireless May Benefit From Results of Auction”).

10T his is stated by Edward Gibbon, (1737-94), English historian, in his book "The History of the Decline
and Fall of the Roman Empire."”

1VWe are grateful to Sushil Bikhchandani for pointing this out.



much more general in all other dimensions.

This paper is also related to the literature on mechanism design with type-dependent
outside options and most notably to the paper by Krishna and Perry (2000) who examine
efficient mechanisms, whereas our focus is revenue maximization. Jehiel-Moldovanu (2001b)
are also concerned with the design of efficient mechanisms. Lewis and Sappington (1989)
study an agency problem where the outside option of the agent is type-dependent. Among
other things, the fact that the critical type is not necessarily the “worst” one mitigates
the inefficiencies that arise from contracting under private information. This feature also
appears sometimes in our analysis, but we also show that sometimes inefficiencies are not
reduced, but they change in nature, and the monopolist instead of selling too little, she
sells too much. Jullien (2000) uses a dual approach to characterize properties of the optimal
incentive scheme such as the possibility of separation, non-stochasticity, etc. In this paper
we do not rely on dual methods. Other differences from Jullien are, that we allow for
multiple agents ,and for the principle to choose the outside options that agents face.

Externalities, and hence outside options, are also type dependent in Jehiel-Moldovanu
and Stacchetti (1999), JMS’99, who consider the design of optimal auctions of a single
unit in the presence of type-dependent externalities and multi-dimensional types. A buyer’s
type is a vector, where each component indicates his/her utility as a function of who gets
the object. In JMS’99 the multi-dimensionality of types makes the solution of the general
problem intractable.!?

We conclude with a brief outline of our paper. In Section 2 we introduce the model.
Our analysis starts in Section 3 by establishing properties of feasible mechanisms, that is
mechanisms that satisfy incentive, voluntary participation, and resource constraints. Sec-
tion 4 characterizes revenue maximizing mechanisms. In Section 5 we present two largely
self contained examples. A reader can get a flavor of our findings by looking directly at
these examples.

2. THE MODEL

A risk neutral seller owns N indivisible, possibly heterogeneous, objects that are of 0 value
to her and faces I risk-neutral buyers. Both N and I are finite natural numbers. The seller
(indexed by zero) can bundle these N objects in any way she sees fit. An allocation z is an
assignment of objects to the buyers and to the seller. It is a vector with N components,
where each component stands for an object and it specifies who gets it, therefore the set
of possible allocations is finite and given by Z C [I U {0}]"Y. Buyer i’s valuation from

L2JMS (1999) restrict attention auctions where (1) the buyers submit scalar bids and (2) the seller transfers
the object to one of the buyers for sure, and show that a second-price auction is an optimal mechanism among
this class. They also slightly relax the “for sure sale” assumption, by allowing for reserve prices and show
that with two buyers, this auction remains optimal.



allocation z is denoted by 77(c;, c—;) and it depends on buyer ¢'s cost parameter ¢; and
on the cost parameters of all the other buyers c_;. Values are therefore interdependent.
Buyer i’s cost parameter ¢; is private information and is distributed on C; = [¢;, G|, with
0 < ¢ <7¢ < o0, according to a distribution Fj that has a strictly positive and continuous
density f;. All buyers’ types are independently distributed. We use f(c) = X;erfi(c;), where

¢ € C = xierC; and f_i(c—i) = xjerfi(c;).

We assume that, for all ¢ € I ,J W%(',C_i) is decreasing, convex and differentiable for all
z and c_;. We impose no restrictions on how 7; depends on z nor c_;. This formulation
allows for buyers to be demanding many objects, which may be complements or substitutes,
and for externalities, that can be type and identity dependent. It is very well possible that
77 (ci,c—i) # 0 even when the allocation z does not include any objects for 4. An instance
of that, is a situation where buyers are firms competing in different markets, and whatever
happens in the current sale will affect their positioning and interaction relative to the other
buyers in other markets. More importantly, an allocation may affect buyer ¢ even if he is
not taking part in the auction, which implies that non-participation payoffs may depend
on i's type. Type-dependent non-participation payoffs are the key force behind our new
insights.

The objective of the seller is to design a mechanism that maximizes expected revenue,
and buyers aim to maximize expected surplus.

Mechanisms

By the revelation principle it is without loss of generality to restrict attention to truth-
telling equilibria of direct revelation games where all buyers participate. To see this, note
that the set of possible allocations is Z = {I U {0}}", which is larger, the more buyers
participate. The seller can then replicate an equilibrium outcome of some auction, where
a subset of the buyers for some realizations of their private information do not participate,
with a mechanism where all these buyers participate, and by mapping their corresponding
reports to the allocation that would have prevailed at the equilibrium of the original auction
game.

A direct revelation mechanism,(DRM), M = (p,x) consists of an assignment rule p :
C — A(Z) and a payment rule x : C — RI.

The assignment rule specifies the probability of each allocation for a given vector of
reports. We denote by p®(c) the probability that allocation z is implemented when the
vector of reports is ¢. Observe that the assignment rule has as many components as the
number of possible allocations. The payment rule = specifies, for each vector of reports c,
a vector of payments, one for each buyer.



Non-Participation Assignment Rules

In the event that a buyer ¢ does not participate in the mechanism, then his payoff is
determined by the allocation that prevails when he is not around, which we denote by
p~t. A non-participation assignment rule specifies a p~* for each i € I. We are assuming
that the seller has the commitment power to choose the non-participation assignment rule,
in such a way, as to maximize ex-ante expected revenue.'® The seller chooses p~* out of
P ={pt:C; — A(ZY}, where Z=' C Z is the set of allocations that are feasible
without 4. If the seller does not have such commitment power, then P~ contains all the
assignment rules that are feasible and optimal when 4 is not around (therefore P~ C {p~*:
C_; — A(Z7H)}). Tt is worth stressing, that the qualitative features of our results depend
on the fact that outside payoffs are type dependent, and not on whether the seller has the
power to choose p_i or not.

We now proceed to describe the seller’s and the buyers’ payoffs.
Payoffs from Participation

The interim expected utility of a buyer of type ¢; when he participates and declares ¢}
is

Ui(ci ¢ (p,7)) = Be_, | > (0°(c}, =) (ciyei) — wil ], c)
z€Z

Payoffs from Non-Participation

The payoff that accrues to buyer ¢ from non participation depends on what allocations

will prevail in that case, which are determined by p~*, and on his type ¢;, and it is given by

Ui(cip™) = Be, | D (07 (coi)milcine) |

2€Z 1

where (p~*)? denotes the probability assigned to allocation z by p~¢. The fact that i’s non-
participation payoffs depend on his type is arguably the most crucial feature of our model.
For an illustration of participation and non-participation payoffs, see Figure 1.

We proceed to describe the timing

Timing

Stage 0: The seller chooses a mechanism (p, ) and p~, for all .
Stage 1: Buyers decide whether to participate or not, and which report to
make. If all make a report, the mechanism determines the assignment of objects

13This is also the assumption in JMS’96. In that paper there is a single object for sale, and constant with
respect to type, outside options.



Participation / Non-Participation Payoffs

Payoff to puyer Shape depends on p

Vi(c)

U.(c,p™')

Shape dependson P~
/ P P P

Figure 1

and the payments. If buyer ¢ decides not to participate, the objects are assigned
according to {p~*}. If more than one buyers fail to participate, we assume that
the seller keeps the objects.

In order for a mechanism to be feasible it must be the case that all buyers choose to
participate and to report their true type. We are capturing a one-shot scenario. Given that
others participate and tell the truth about their types, is it a best response for buyer i to
participate and tell the truth about his type? In such a one-shot scenario, buyers are not
making inferences about the types of buyer ¢ in the event that buyer ¢ does not participate.

We now provide a formal definition of what it entails for a direct revelation mechanism
to be feasible.

Feasible Mechanisms

Definition 1. (Feasible Mechanisms) For a given non-participation assignment rule,
(p~%)ie1, we say that a mechanism (p, z) is feasible iff it satisfies

(IC) “incentive constraints,” a buyer’s strategy is such that

Ui(ci,ci; (p,x)) > Ui(ei, ci; (p,x)) for all ¢, ¢, € Cj, and ¢ € T
(PC) “voluntary participation constraints,”

10



Us(ciyci (p,x)) > Us(ci,p™) for all ¢; € Ci, and i € T

(RES) “resource constraints” > p*(c) =1, p*(c) >0 for all c€ C
2€Z

Summarizing, feasibility requires that p and x are such that buyers (1) prefer to tell the
truth about their cost parameter, (2) buyers choose voluntarily to participate in the mech-
anism and (3) p is a probability distribution over Z.!* We now state the seller’s problem.

The Seller’s Problem

With the help of the revelation principle the seller’s problem can be written as

maX/in(c)f(c)dc (1)

subject to (p, x) being “feasible.”

This completes the description of our model and the seller’s problem. We proceed with
the analysis of it. Proofs of the results not presented in the main text can be found in the
Appendix A.

3. IMPLICATIONS OF INCENTIVE AND PARTICIPATION CONSTRAINTS

The seller’s objective is to maximize expected revenue subject to incentive, participation
and resource constraints. This section studies implications of these constraints.

Implications of Incentive Compatibility

Given a DRM (p, z) buyer i's maximized payoff,

K3

Vilei) = mz}x / <Z pz(c'i, c_i)mi(ci,c—i) — :ci(cg, c_i)> foi(c—y)de—, (2)

¢ ze€Z

is convex, since it is a maximum of convex functions. In the next Lemma we show that the
incentive constraints translate into the requirement that the derivative of V;

Pi(g) = / sz(ci,c_i)Wf_i(c_i)dc_i, (3)
C

L z€EZ

—1

(more precisely a selection from its subgradient, which is single valued almost surely),
evaluated at the true type is weakly increasing.!®

M4Notice that Z contains the allocation where the seller keeps all the objects, thus > p*(e) =1.
z€Z
15Tn the classical case, where there is only one object and i’s payoff from obtaining the object is v;, (see

Myerson (1981)), the analog of P; is Pi(v;) = [ p(vi,v—;)f—i(v—s)dv_;.
V_,;

11



Lemma 1 For a given non-participation assignment rule, (p~")scr, a mechanism (p,x) is
incentive compatible iff

Pi(c}) > Pi(c) for all &; > ¢; (4)
Vi(ei) = Vi(@i;p,p fP Yds  for all ¢; € C;. (5)
With the help of Lemma 1 and using standard arguments, we can write buyer i’s ex-

pected payment as a function of the assignment rule p, and the payoff that accrues to his
worst type,'® V;(¢i;p,p~")

[0 @—/gy)% 0 (e + G D) e - Vi pa )

z2€Z

Let
I

_ e e Fl(Cz) 87rf(ci,c_i)
Jz(C) = ;[ Z( 2y 71) + fz(CZ) aCi

denote the virtual surplus of allocation z. Notice that we are summing over all buyers

]

because an allocation may affect all of them, and not just the ones that obtain objects.

Therefore the virtual surplus of allocation z may depend on the whole vector of types.'”
Using this definition, the seller’s objective function can be rewritten as
I I
Z/ zi(c) f(c)de = /Zp f(e)de — Z Vi(@i;p,p ). (6)
i=17C 2€Z i=1

Now we turn to examine the 1mphcat10ns of the participation constraints.
Implications of Participation Constraints

Since the seller’s revenue is decreasing in V;(¢;; p, p~%), at a solution this term must be as
small as possible subject to the participation constraint V;(¢;) > U,(c;,p~*) for all ¢; € C;.
This observation implies that there will be at least one type ¢; where Vi(¢;) = U,(ci, p™°).
We call this the critical type of i and denote it by ¢ (p, p~ ). In the event that there is more
than one type where V(cl) = U,(ci,p™"), then any one of them will do. From (5) we have
that Vj(c¢;) =constant— f P;(s)ds), so ¢ must be such that

Ci

ﬁmfwewmm}/"a@@—m@mﬂ. (1)
C; ¢

See Figure 2. Note that (7) implies that if ¢} is interior, V; and U; must be parallel at c],

Y For more details see Appendix.

'"In Myerson (1981) virtual valuations are buyer-specific. For buyer i we have J;(v;) = v; — 1}?2(:)1), (vi

is ¢’s valuation for the object).
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Participation Constraints Can bind Anywhere

Payoff to buyer i

Shape of Vi (Ci ) Exact position is
pinned down by the
constant subject to
— the participation
constraint

depends on P

"(p)/ g

U,(c,p")

Figure 2

namely it must be the case that

U, (cf,p™")

€ oV;(ch). 8
oo () (5)
If we are at a corner, that is ¢ = ¢; then it must be the case that agi(gi’p ) > d‘géf"), and
if we are at ¢ = ¢; then it must hold that agi%;;p_z) < d‘g( %) Moreover, (7) implies that
at ¢ we have that

Vi(ei) = Us(ci,p™") 9)

and from a generalization of the Fundamental Theorem of Calculus (see Krishna and Maen-
ner (2001)), and incentive compatibility, it follows that

Vi@ p,p~) = Us(c: (0,p") / Pi(s (10)

p,p~t)

From (10) we see that V;(¢;;p,p~") depends on p through two channels: P; and ¢} (p,p~).

13



Moreover, as already discussed, p~ is often chosen by the seller in order to minimize

Vi(ci;p,p~"), namely

Cg

p(p) € arg rllél%l Uil Hpop ), 0 + / P;(s)ds. (11)

i (p,p~)
For each assignment of the objects, p, there is a potentially different optimal “threat” p~*(p),
which can be random. The dependence of p~* on p adds an additional level of complication.
By substituting a solution of the program described in (11) into (10), we have that at
an optimum it must be the case that

(&

Vi@ p o (0)) = Us(c (o, (0)), 9" + / Py(s)ds. (12)
ci(pp~H(p))

Modified Virtual Surpluses

We now proceed to demonstrate how the presence of type-dependent outside options
modifies the virtual surpluses of allocations. By substituting (12) into (6), the objective

function of the seller’s problem can be rewritten as

Cq

I
/ S r LM~ 3 |Ueer o)y )+ [ RGds| . 13)

=€z (P~ (p))

Recalling that Pi(¢;) = [ > p* Omy c”c i) —i = f i(c_;)dc—;, and by rearranging the terms in
C—i z2€Z

(13), we can rewrite it as

?(c ! . )
/ > rle [ ZchZCZ (o z@»agf ) fi(lci)] f(c)dcZ;Ui(cf(p,p"(p)),p‘z).

z€Z

We define the “modified virtual surplus” of allocation z by

filei)

Observe that the modified virtual surplus depends on p and on p~* through ¢} (p,p~*(p)),
which depends on the shape of the participation payoffs, which are determined by p, and

- oni(c) 1
Jz(c) Z 1c%>c p,p~(p)) 820( ) (14)
=1 ¢

on the shape of non-participation payoffs, which are determined by {p~%};c;.
It is useful to compare the modified virtual surplus of an allocation z, J,, with the
virtual surplus of that allocation, J,, and with the actual surplus of that allocation S,

14



When outside options are flat,

PC binds at WORST type

Payoff to buyer 1 Payoff from participating: shape

depends on p

Vi (¢,)

¢

/

Payoff from non-participation

Figure 3

I
which is given by S.(c) = >_ 77(ci,c—;). This is interesting because the degree of efficiency
i=1
of a revenue maximizing mechanism depends on these comparisons.

If ¢ = ¢; for all ¢ the modified virtual surplus coincides with the virtual surplus hence
J.(¢) = J.(c). (15)

This is because the virtual surplus is modified only for ¢; > ¢. The condition ¢ = ¢;
for all ¢ holds when outside options are type-independent as is the case in in Myerson
(1981) and in JMS’96. To see this, note that if outside options are type-independent and
equal to U,(p~*) for all ¢;, then because V;(c;) is decreasing in ¢; it is follows immediately
that the participation constraint will be binding at the highest cost type, namely ¢ = ¢;,
irrespectively of the exact shape of V;, which depends on p. For an illustration see Figure
3. If on the other hand, ¢ = ¢; for all 7, then

Z

I
J.(0) Z i ), (16)

which can be rewritten as

s | File) —1 93 e )
; |: CZ, Z fZ(Cz) 8ci ’ (17)



A I 2
In this case J.(c) > J.(c) because ) agic(_c) T (18_) is negative, which follows from the fact
1/:1 1 2 T

. . . . F(c:)—1 5] Z i,C—i
that 77 is decreasing in ¢;. Moreover, since the amount ( }(,C(Q,) Ul (806,0 )
k2 T 1

also have that the “modified virtual surplus” of allocation z, is actually larger than the

) is positive, we

actual surplus of allocation z, that is .J,(c) > S.(c).

Finally, when ¢! is interior for all ¢, namely ¢} € (c;, ¢;), then depending on how a vector
(¢i,c_i) compares to (¢}, c¢* ), J, differs. Take for instance a (¢, é_;), where for all i we have
that & < ¢, then it holds that J,(¢) = J,(¢), as in (15), and at that ¢ the modified virtual
surplus is less than S,(¢). Now take a (¢;, ¢_;), where for all ¢ we have that ¢; > ¢}, then it
holds that J.(&) = J.(¢) — ‘[1 ome 1

i=

and J,(¢) > S,(é). For a vector (c;,c_;) where ¢; > ¢ for some i, and ¢; < c; for some j,

as in (16), and at ¢ we have that J.(¢) > J.(¢&)

we can see from (14), there is not modification to J, for j, but there is for <. Then we can
still conclude that .J,(c) > J.(c), but depending on the exact comparison of (¢;,c_;) with
(¢t ¢*;) both J,(c) > S, (c) and J,(c) < S,(c) are possible.

How the modified virtual surplus of an allocation, (the jz), with the actual virtual
surplus of that allocation, (the S.), is important because, as we will see later, it affects
the degree of efficiency of the revenue maximizing mechanisms, which are studied in the
following section.

4. OPTIMAL MECHANISMS

Here we put together all the implications we have derived in the previous section, and
describe the conditions revenue maximizing mechanisms satisfy.

Using (14) the seller’s objective function given by (13) can be rewritten as

1

[ v~ 3 Uei . )7 (18)
C

ze€Z i=1

The following Proposition characterizes the problem solved by revenue maximizing
mechanisms.

Proposition 2 If in a mechanism (p,x) the assignment function p satisfies resource con-
straints, (4), and mazimizes (18), with c¢;(p,p~*) given by (7), and the payment function x
for all i is given by:

50 = S Om@+ [ 3 e T s Vi @), (9)

S
zeZ i zeZ

with V;(¢;;p,p(p)) given by (12), then the mechanism is optimal.

16



Proof. We have already argued why at an optimal mechanism, there must exists at list
one type for each buyer where the participation constraint binds. We have called this type
ci(p,p™%), and it satisfies (7). With the help of (7) we got (9). These two equations are
implications of the participation constraints on the solutions.

The implications of the incentive constraints are that revenue can be expressed as in
(6). Combining this, with the implications of the participation constraints, namely (7) and
(9) we showed how we can express revenue by (18).

Now in order for a mechanism to be a valid solution it must have an allocation rule p
that satisfies (4), and resource constraints.

Finally, if in a mechanism the payment rule is given (19), then for all i € I, i's payoff
given p and p~i(p) subject to the participation constraints is minimized, since the type c;
is indifferent between participation or not. To see this, note that by substituting (12) into
(19), and taking expectations with respect to c_;, we obtain that

7 ori(s,c—;)
xi(e)f-ilc—y)de—; = p*(c)mi(c) + P (s, c_i) —————=ds| f-i(c—i)dc_;

Cq

U o)) — / Pi(s)ds. (20)
et (p,p~i(p))

By recalling (3), (20) implies that

Vi(er) = Uy(et(pop(0) ") — / Pi(s)ds,

Cq

from which we immediately get that

Vi(e}) = Us(c; (p,p~"(p)), p7").

From these considerations it follows that a mechanism (p,z) that satisfies all these
conditions is optimal. m

Note that Proposition 2 is analogous to Lemma 3 in Myerson (1981). As in that paper,
we have revenue equivalence. Any two mechanisms that allocate the objects in the same
way and give the same expected payoff to the worst type, generate the same revenue. There
are however, important differences. The most important one is that in our problem the
objective function can depend non-linearly on p. The reason is that ¢}’s may depend on
non-linearly on p directly and through p~*(p), and revenue depends on c¢; through jZ, and

I . .
the term 2@(0}* (p,p~"(p)),p™")-

In Myerson (1981) and JMS (1996) ¢} is always equal to ¢; for all ¢ because non-

(2
participation payoffs are independent of types. This implies that the modified virtual surplus

17



is equal to the virtual surplus and independent of the assignment rule p. In this case, a
revenue maximizing p is independent of the outside options that buyers face, and it has a
simple characterization, because revenue is always linear in p. This is true even if, as in this
paper and in JMS (1996), the seller can choose p~*. The reason is that, when outside options
give a type-independent payoff, they are essentially just a number. All the seller needs to
do is to choose the option that guarantees the lowest number for 7. In that case optimal
threats p~* are independent of p and deterministic. In contrast, with type-dependent outside
options p_; can depend on p, can be random and cannot be chosen by simple inspection,
as we illustrate in Example 5.2.

From the previous discussion, it is clear the impossibility of finding an analytical expres-
sion for p’s that maximizes (13) for all cases because the seller’s objective function is non-

18 in p. Fortunately, the problem has enough structure to allow the use of variational

linear
methods. In particular, if the functions 77 (-, c_;) are smooth enough, then c}(p, p~*(p)) is a
differentiable function of p, thus guaranteeing that the objective function is differentiable,
and hence continuous. It is not hard to show that the feasible set is sequentially compact.
A continuous function over a sequentially compact set has a maximum. The solution will
depend on the particular shapes of w7 and of the distributions Fj. This environment is more
complicated than the ones considered by Jullien (2000), because there are multiple agents
and the seller can choose the outside options. However in Figueroa and Skreta (2005) we
show that the problem often, (but not always), reduces to one with essentially exogenous
non-participation assignment rules. Unfortunately, the difficulties arising from having a
non-linear objective function remain. In that respect, Proposition 2 is analogous to Theo-
rem 8 in Maskin and Riley (1984), who characterize revenue maximizing auctions with risk
averse buyers. As here, in that paper too, the non-linear nature of the program prohibits
an analytical expression in general.

Fortunately, we are able to identify interesting sub-classes of problems where the problem
becomes linear and hence analytical solutions can be obtained through a procedure similar
to the one used in Myerson (1981). As we later argue, these classes of problems are by
themselves economically relevant, and allow us to analyze the qualitative effects that type-
dependent outside options have on revenue maximizing mechanisms, and to compare them
to the particular case of type-independent ones. This by no means implies that they are the
only relevant ones, but their analytical tractability is used to illuminate the more general
role of outside options on the shape of revenue maximizing mechanisms.

4.1 Optimal Mechanisms when Revenue is Linear in p

Whether the problem turns out to be linear on not, depends on how sensitive the outside
payoff of a buyer is with respect to his own type, relative to the sensitiveness of the payoffs

'8The objective function is non-linear in p when ¢} (p, p~*(p)) depends on p. For an example see Appendix
B.
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received if the buyer actually participates. Many cases with interesting economic insights
turn out to be linear, as we illustrate in our examples in Section 5. They include the
case where outside options can depend on p and on the type of competitors, but not on the
buyer’s type. They also include the somewhat opposite polar case, where the outside option
depends very strongly on the buyer’s type, and an intermediate case where both options are
present: the buyer can be threatened with an allocation that yields him a type independent
payoff, and with an allocation where the payoff is very sensitive to type.

We start by describing under what circumstances revenue will be linear in p. In one
sentence, revenue is linear in p in cases where c; does not depend on p when p~" is chosen
optimally. This can occur in many cases, like the three ones we just described. We analyze
them in detail in what follows, since they suffice to illustrate the main economic insights
of the influence of outside options in the shape of revenue maximizing mechanisms. It is
important to stress that all the conditions that we will be discussing are imposed only on

the shape of (-, c_;) with z € Z 7.

4.1.1 Environments where Revenue is Linear in p

We now present the three environments described before and its particular characteristics.
A more detailed description can be found in Appendix C.
In what follows we use the notation:

T = [ wien e il des
(O
Case 1: Flat Payoff from Worst Allocation for

Suppose that there is an allocation in zZF € Z7¢ that gives i a type-independent payoff
and satisfies

F .
7 (c_y) < mé(ciye ) forall z € Z7" and ¢; € C.

7

Then, an optimal outside option from the seller’s perspective, is (p_z)zf = 1, since it solves,
for all p

pi(p) € arg p_l}éi})l_igi(c;(p’ P, p7) + / Pi(s)ds (21)

In that case we have (see Figure 3)

¢(p,p~'(p) = @ and (22)
Qz(c;k(pap_z(p))?

pp) = w (@)
Environments that fall in this category are in Myerson (1981) and in JMS (1996).
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Case 2: Very Steep Payoff from Worst Allocation for i

Another case, is the polar opposite of the previous one. Here the worst allocation for
buyer 7 is type dependent, and very sharply so. More precisely, there exists an allocation

zf € Z~*, at which i's payoff is very sensitive to type, and guarantees the lowest payoff at

.19
G

25
dm;" (ci) o dmila)
dci - dCi
25
T (¢;) < Ti(g) forall z e Z.

(2

forall ze Z

It is easy to see (the details are in Appendix C) that the optimal outside option from the

seller’s perspective is (p*’)zis = 1 for all p, since it solves, for all p,

p ) oy min Ui o)+ [ Ro)ds (23)

pteP—

In that case we have (see Figure 4)

¢ (pp'(p)) = ¢ and (24)
Ui(ci(p,p~"(0),p 7' (p)) = 71 (cy).

Case 3: Coexistence of Flat and Very Steep Worst Allocations for i

Case 3: Coexistence of Flat and Very Steep Worst Allocations for i

Another interesting case is the one where options like ZZS and zZF coexist, and it is not
obvious which one should be used by the seller, because

.S i F
dn; (c;) < drm?(ci) < dm;* (c;)
de; - de; — dc;

S ,Z~F

Ti(e) > 7 ()

7

forall z € Z,¢c; € C;

S

As one can see from Figure 5, for some types, zZF hurts more, and for others z;.

In this case?”, the solution to

19Quch a case is illustrated in Scenario 2 in Section 5.1.
20Guch a scenario is illustrated in Section 5.2.
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When outside options are steep,

PC binds at BEST type
Payoff to huyer 1

Vi(c,)

S

p°(c)

Figure 4

Coexistence of Steep & Flat

Buyer's Outside Options
payoff

z
p° (c)
.l.l.l.l.l."
! e, C
&
| ”0’
o‘.‘
e
...’o zS
«. p” (c)

Figure 5
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. . F . S
P € ar min p () + (L= p R () + [ Pls)ds, (25)

is such that

¢i(p,p "(p)) = & and (26)
U (¢ (p,p~"(p), 0" (p)) = 7, (&) =7, (&) for all p and p~*(p).

where ¢; is the type where the payoffs cross, that is
£ 25,

AR AC) @)

In this case, the critical type is always the same, but the optimal p~* depends on the
assignment rule that the seller wishes to implement.

Summing up, in all the cases?! described so far neither c(p,p~*(p)) nor the level of
U,(.,p~%(p)) evaluated at the critical type c}, depend on p. This is despite the fact that p~*
can depend on p.?? This means that for every possible assignment rule p, when the seller
chooses p~¢ € P~% optimally, that is according to (11), the following are true®3

¢ = ¢(pp(p) and (28)
Ui(c) = Ui(c,p"(p))

Proposition 3 If (28) is satisfied, the seller’s expected revenue can be expressed as a linear
function of the assignment rule,

I
[DNACIACHEI S SRt

C z€Z

where J, is the modified virtual surplus of allocation z defined in (14).

4.1.2 Analysis of the Problem when Revenue is Linear in p

When Proposition 3 holds, we can break the characterization of revenue maximizing mech-
anisms into two steps: first find an optimal non-participation assignment rule {p~%(p)}ic1,
as we have done in (21), (23), or (25), and then find an optimal assignment rule p that
solves:

2! These are not the only cases where revenue will be linear in p, but they are suggestive on what classes
of environments are likely to exhibit this property.
?2This occurs in the cases where ¢} is interior and p~* must also satisfy (8).

23 Notice that if p~* is exogenous (7771‘ is a singleton) the second requirement is trivially satisfied.
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PEA(Z)

mas [ S (15 (29)
C z2€Z

s.t. P; increasing.

This problem has a similar structure to the classical one in Myerson (1981), but with

modified virtual surpluses, and can be solved using relatively conventional methods. Despite

this, the solution will often exhibit stark differences from the solution to the classical one.
The solution is straightforward if the assignment rule that solves the relaxed program

o C/ zezzp (e)72(0) f()de

also satisfies the requirement of P; being increasing, since in that case, the relaxed program
can be solved by pointwise maximization. Following Myerson (1981) we will refer to this as
the regular case. On the other hand, in the general case, pointwise optimization will lead
to a mechanism that may not be feasible.

In the classical problem, a sufficient condition for the problem to be regular is that the
virtual surpluses are increasing. A mild condition on the distribution function F; (M HR)
guarantees that. Unfortunately, in our more general environment the problem fails to be
regular even if virtual surpluses, (or modified virtual surpluses), are monotonic, so Myerson’s
technique of obtaining ‘ironed’ virtual valuations will not work. In Figueroa and Skreta
(2006b) we illustrate this phenomenon in a concrete example and show a way to solve the
general case, which does not impose additional assumptions, such as differentiability, on
the mechanism. There we argue that in the general case an optimal mechanism will involve
randomizations between allocations. Such lotteries are quite surprising given that buyers
are risk neutral and types are single dimensional.

We now state a condition which guarantees that pointwise optimization will lead to a
feasible solution. This condition generalizes the one in Myerson (1981), since with indepen-
dent private values and linear utility functions our condition is satisfied whenever MHR is
satisfied.

Before stating the Assumption, let us provide some explanation. Recall that IC' requires
P;, to be increasing in ¢;. Pointwise optimization assigns probability one to the allocation
with the highest virtual surplus at each vector of types. Along a region where there is no
switch, one allocation, say z1, is selected throughout and P;(¢;) = [ %ﬁi’c_i) foi(e—i)de—,,

which is increasing by the convexity of 7;. Incentive compatibility can be violated though,
when the seller wishes to switch, say, from allocation z; to zo. At such a point ¢ we have that
A A 22 (e, .

J,(¢) > J., (c) and IC requires that P; does not decrease, namely [ %c:’cﬂ) foilc—y)dc—; >

—1

1 (. .
i %f‘l) f—i(c—;)dc—;. Our condition guarantees precisely this.
C_
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Assumption 4 ?* Let 21,25 € Z be any two allocations. For a given cost realization (c;, c_;)

. 25 S — ) kS + ) 8771'?2(67;) 87_1’51(61')
if?® 21 € arg anEaZx J.(¢; ,c—;) and z3 € arg ranaZX J.(¢]  c—;) , then e 2 he

We now state another condition, which is more stringent, but often easier to verify than
Assumption 4.

. . 0Jz, (i 0Jzq (cie—; 772 (c;
Assumption 5 For all i and for all c_;, when 2((9;6 ) > 1(%;0 ) then aﬁécz(,c) >
aﬁfl(ci)

dc; :

Lemma 6 Assumption 5 is sufficient for Assumption 4.

For the special class where payoffs are linear in own type, there is an even simpler
condition that is sufficient for Assumption 4. This is the well known monotone hazard rate
condition.

Lemma 7 If the payoff functions are of the form 77(c;) = A?+B?c;, and ?:((;Z)) is increasing
in ¢; for all i, then Assumption 4 is satisfied.

With the help of Assumption 4, it is straightforward to find an optimal assignment rule
which is described in the following result.

Proposition 8 Suppose that (28) holds.?® If Assumption 4 is satisfied, then an optimal
allocation p is given by>"

. 1 if 2* € argmax.J,(c)

z
0 otherwise

The qualitative features of the solution depend on whether the conditions in (28) are

= ¢, or ¢f € (¢,¢). If ¢ = ¢, then J,(c) < S;(c) and the seller

sells less often than it is efficient. When the conditions in (28) are satisfied for ¢ = ¢;,

J.(c) > S.(c) and overselling occurs, as stated in the next corollary:

satisfied for ¢} = ¢;, ¢!

Corollary 9 Suppose that ¢} (p,p~*(p)) = & for all i. Suppose also that when the seller
keeps all objects, every buyer gets a payoff independent of his type, for example zero. Then,
at a revenue maximizing assignment rule the seller keeps all the objects less often than
what is ex-post efficient.

?4This condition has similar flavor to condition 5.1 in the environment of Jehiel and Moldovanu (2001b).
We are grateful to Benny Moldovanu for bringing to our attention this connection.

25The notation c; means limit from the left to ¢; and cj‘ means limit from the right to c;.

206In Appendix B we described a couple of specific environments where (28) holds. The list is not, nor it
is meant to be exhaustive.

2TTies can be broken arbitrarily.
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The situation in Example 5.1 exhibits this feature. As noted in the introduction, “over-
selling” is in contrast with a standard intuition from monopoly theory, where the monopolist
restricts supply in order to generate higher revenue.

When ¢ € (¢;,¢), then J,(c) < S.(c) for some type profiles, and J.(¢) > S.(c) for
others. Here, underselling and overselling can occur simultaneously, (the seller keeps the
objects in some cases where he should sell, and sells them in cases where he should keep
them), or even ex-post efficiency can occur. Example 5.2 illustrates a scenario where the
critical type is interior and the revenue maximizing mechanism is ex-post efficient.

Now we move on to see how much of what we learnt, by examining revenue maximizing
mechanisms in linear cases, applies when revenue is non-linear in p. As discussed, this
occurs when cf(p,p~*(p)) depends on p. The intuitions discussed above remain: the relation
between modified virtual surpluses, and real surpluses will depend on the actual values of
ci(p,p % (p)), for i € I, at the optimal p. We proceed to examples.

5. ILLUSTRATION OF THE SOLUTION

The purpose of this section is to illustrate the solution in simple but economically insightful
examples.

5.1 The Role of Steep Outside Options

Consider 2 firms fighting for a single slot to advertise their products. There are three feasible
allocations. The seller keeps the slot, zp; firm 1 gets the slot, z; or firm 2 gets the slot, zo.

The value of airing a spot depends on the actual cost parameter ¢; of firm ¢, which is
private information and is uniformly and independently distributed in [0, 1] for both firms.
The value of not airing a spot depends on the allocation implemented: a firm suffers an
externality, (which depends on its cost parameter ¢;), if its competitor gets the spot, while it
gets a payoff of 0 in case nobody gets it. Let 77? (¢;) denote the payoff of firm ¢ if allocation
zj is implemented and its type is ¢;. The payoffs that accrue to each firm from each of these
alternatives are

m°(c1) =0 3 (c2) =0
mi(a)=1—ca 75 (e2) = —2¢
m2(c1) = =21 wP(ea) =1—co

An assignment rule here is p(c) = (p*(c), p*'(¢), p*2(c)), where ¢ = (¢, ¢2).
The virtual surpluses of allocations zg, z; and 29 are given by

Jwlc) = 0
le (C) = 1- 261 — 402
J(c) = 1—2c —4c.
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Using (6) we can write the seller’s problem as:

max [ [ P (€45 (012 €97 (00 (Oderdea Vi (Lp.p ™ (0) VoL, pip 2 (9)

[0,1] [0,1]
(30)
subject to:
Pi(c) = — f ¢) + 2p*2(c)]dea be increasing
Py(c2) = — [[2p™ (¢) + p*2(c)]dcy be increasing

2
0<p*(c)<1,i=0,1,2and > p*(c) =1
i=0

The solution of this problem crucially depends on the allocations that prevail if a buyer
refuses to participate in the mechanism, since these determine V;(1,p,p~%(p)), i = 1,2. We
demonstrate this point by solving for the optimal mechanism under two different scenaria
regarding the outside options that buyers face.

Scenario 1: Flat Outside Options

In this case if a buyer does not participate the seller must keep the slot. Then

pt= 7= (p™(c), 7 (c),p™(c) = (1,0,0).

Given this non-participation assignment rule, the payoff to buyer ¢ from not participating
is 7°(c;) = 0, which is independent of i's type. Then participation constraint binds at
the “worst” type ¢1 = ¢2 = 1, because at an incentive compatible assignment rule V; is
decreasing in ¢;.?% This implies immediately that

Vi(1,p,p~(p)) = Va(1,p,p (p)) = 0,

and the objective function in (30), after substituting for the J.s, it becomes

max / / [P*(c) (1 —2¢1 — 4e2) + p™(c) (1 — 2¢2 — 4cq)]derdes. (31)
P
[0,1] [0,1]

Pointwise maximization gives us

(0,1,0) ifcg <e¢pand 1> 2¢; + 4e
p(c) = (0,0,1) ifc; <ecgand 1> 2co + 4y ,
(1,0,0) if 2¢; +4cp > 1 and 2c9 +4¢p > 1

which is feasible, and hence optimal. Feasibility follows from Lemma 7, since we have linear
payoffs and the uniform distribution satisfies M H R. We graph the revenue assignment rule
in Figure 6.

2 Recall Figure 3.
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Optimal assignment rule when seller keeps the slot in
case i does not participate

C ¢,=0.5-2c,

Firm 2 /—-

Fikm 1

Figure 6

Scenario 2: Steep Outside Options
In this case, if a firm fails to participate the seller gives the slot to its competitor, the
other firm, that is

p~t = (™ (c),p™ (), p™(c)) = (0,0,1) and p~? = (p™(c),p™ (c),p(c)) = (0,1,0).

It is not hard to see that this is the optimal way for the seller to threaten buyers, since
giving the slot to the competitor has the lowest payoff for buyer . We now argue that in
this case the critical type will be ¢; =¢; = 0, for all ¢ and p. This is because allocation z;
gives the lowest payoff to ¢ when his cost is the smallest possible, that is

Zj

T

(0) <77 (0) for all z € {zp, 21, 22} (32)

and it gives the steepest payoff to buyer i, for ¢, 7 = 1,2 since we have that

dr’ (ci) < dr?

—de = de for all z € {29, 21, 22}. (33)

From (32) and (33) it follows that the participation constraint will always bind at ¢} =¢; = 0.
Such a situation is depicted in Figure 4.
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Then for 4,57 = 1,2 we have

1
Vi(Lp.pi(p) = )+ / Pi(es)de; (34)

1
= +/chldcl
0

:0+/1/1 c) — 2p¥(c)]de.
0 0

Substituting these expressions in the objective function, we get “modified virtual surpluses”,

20 (C) = 0
z1 (C) = 4- 201 — 402
(€)= 4—2co — 4y

and the seller’s problem can be rewritten us

max [ f [p*1(c) (4 — 2¢c1 — 4e2) + p™(c) (4 — 2c2 — 4eq)]derdes

P
[ 10,1
s.t. (01 - [p? —|— 2p*2(c)]des is increasing -
Py(c2) = — [[2p"(c) + p*2(c)]dey is increasing (35)
2
0<p*(c)<1,i=0,1,2and ) p*(c)=1.
=0

By comparing (31) and (35), we see that how the terms V4 (1,p,p~1(p)) and Va(1,p,p~2(p))
can affect the objective function.
The assignment rule corresponding to pointwise maximization is given by

(0,1,0) if co <¢p and 4 > 2¢1 + 4eo
p(c) =14 (0,0,1) ifeg <cpand 4> 2co +4cy ,
(1,0,0) if 2¢; +4co > 4 and 2¢9 +4cy > 4

which by Lemma 7 is feasible, and hence optimal. This assignment rule is shown in Figure
7.

As discussed earlier, when participation constraints bind at the smallest cost “over-
selling” occurs, compared to what is efficient. In this example, the “ex-post efficient allo-
cation” is given by

(0,1,0) ifca <cjand g +2c2 <1
p°(c) =< (0,0,1) ifeg <ecgand2¢p+c2 <1
(1,0,0) otherwise
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Figure 7
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\\ /
Firm 1 3\
0
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Figure 8
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We illustrate it in Figure 8.

Comparing p(c) and p€(c), depicted in Figures 7 and 8 respectively, we see that at the
revenue maximizing assignment rule firms 1 and 2 obtain the slot for cost realizations where
efficiency dictates that the seller should keep it.

This example illustrates that the optimal assignment rule critically depends on the
outside options that each buyer faces. When the seller can only keep the object if a buyer
fails to participate, the optimal assignment rule assigns the slot less often than it is efficient.
In contrast, in the case where if a buyer fails to participate, the seller gives the slot to the
other firm, the revenue maximizing assignment rule allocates the spot more often then it
is efficient. The reason why the solution in these two scenaria differs, is that in the second
one when firm 7 fails to participate its payoff depends on its cost, (7rfj (¢;) = —2¢;).

Before closing, we would like to stress that the mere presence of externalities, (regardless
of whether they are positive or negative), will not lead to an optimal mechanism where
overselling occurs compared to the ex-post efficient level. This is illustrated in the following
small modification of the current example:

m1°(c1) =0 T3 (c2) =0
mi(c1) =1—c1 m3'(e2) = —0.5
2(c1) = =05 7wP(e2) =1—co

The virtual surpluses of the various allocations in this case are given by

Jp(c) = 0
Jn(e) = 1—-2¢1—-0.5
Jup(c) = 1—2cp—0.5.

Observe that as in the original example there are negative externalities. If a firm’s competi-
tor gets the slot it gets a negative payoff of —0.5. The important difference is that now this
payoff does not depend on the firm’s cost. Consequently, when the seller is threatening to
assign the slot to a firms competitor, that firm faces a payoff that is independent from its
type. A consequence of that is that irrespective of whether the seller keeps the slot if a firm
does not participate, or she gives it to a competitor, the virtual surpluses are unaffected,
since a firm’s outside payoff is a straight line, (0 in the case where the seller keeps the good
and —0.5 in the case that its gives the slot to the other firm), which implies that in both
cases the critical type is ¢/ = ¢; = 1. Also notice that the virtual surpluses of zp, 21 and 2
are smaller, (possibly weakly smaller), than the actual surpluses of these allocations, which
are given by

S.,(c) = 1—¢—0.5
S.(c) = 1—cp—0.5,

30



hence “overselling” cannot occur.

Summarizing, outside options affect the optimal assignment rule only if the payoffs
from non-participation are type-dependent. In the next example we show how in the case
of type-dependent outside options the seller can increase both revenue and efficiency by
appropriately choosing the right outside options.

5.2 An Example with Coexistence of Steep & Flat Outside Options?’

A seller has an invention which is of potential interest to firm A. The firm has a cost
parameter ¢ distributed uniformly in [0,1]. In case firm A gets the exclusive rights, its
valuation is given by 7%4(c) = 5 —5c. In case that there is no sale, the seller can either keep
the invention or open source it. A very efficient firm is not afraid of competition and prefers

30 In

open sourcing to no sale at all, whereas a more inefficient firm prefers the opposite.
particular, in the case of no sale firm A gets 7%1(c) = 0, and in the case of open sourcing
it gets 7*2(c) = 1 — 10c. So if firm A is very efficient with ¢ < %, the option of no one
obtaining the invention is worse than open sourcing. The opposite is true when ¢ > %. An
assignment rule here is p(c) = (p*4(c), p* (¢),p*2(c)). In case firm A does not participate in
the sale, the seller is indifferent between keeping the invention and making it open source.
In fact, since there is nothing else the seller can do in that case, any randomization between
these options is optimal from her perspective and hence credible.
The seller solves:
1
max {[pz“ () (5 — 10c) + p*(c) (1 — 20¢)]de — V' (1,p,p~"(p))
s.t.  —[bp*A(c) + 10p*2(c)] is increasing
0 <p?(c) <1forall z € {24 2,22} and Yoepan 2yp(c) =1

(36)

This example belongs to the class of problems which satisfy (28) for ¢} € (¢;,¢;). As already
discussed, in this case an optimal non-participation rule, which we call p~#, depends on the
assignment rule p that the seller wants to implement. We therefore start by specifying the
optimal p~* as a function of p and then solve for an optimal p.

1. Finding an optimal p~4(p)

With a slight abuse of notation, let p~4 denote the probability that allocation zy is
chosen if A fails to participate, and let (1 — p~4) denote the probability that allocation z
will be chosen. Associated with this non-participation assignment rule is the payoff that
will accrue to A if it fails to participate
N = A-pH-0+p 1 - 10¢)
= p A —10p e (37)

QA(Ca p_

29 This is essentially the example described in the introduction.

30This is different from the previous example, where the allocation that hurts buyers the most is always
the same. Irrespective of the cost parameter, a firm prefers that the seller keeps the slot, to its competitor
obtaining it.
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We know that the optimal non-participation assignment rule must minimize

avc)
dc

1
V(Lp,p (p) =Ua(c*(pp~ )0~ + /

c*(p,p~4)

dc,

which by using (37) can be rewritten as

dv(c)
dc

V) = =100 ) [ de. (38)

c*(p.p=4)

Now at a solution®' p~4(p) the total derivative of V(1,p,p~4(p)) with respect to p~4 is

equal to the partial, and it is given by

dv(1,p,p~4(p))
dp=4

= 1—10c¢*(p,p*(p))-
p~A=p~4(p)

Moreover, at an interior minimum it must be the case that

dv (1,p,p~"(p))
dp—A

e 1—10¢*(p,p~*(p)) = 0,
p~A=p=A(p

which implies that
1
¢ (p,p~p)) = 0 for all p and p~. (39)

1

15> and hence the critical

We have therefore verified that this example satisfies (28) for ¢} =
type is independent of p and p~4.

A

We proceed to find an optimal p~* as a function of an assignment rule p. The slope of

the payoff from non-participation is

aQA(C’ p_A)

=—10p~
dc Op

At an optimal p~4 this has to be equal to the slope of the participation payoff V at

¢*(p,p~(p)) which in our case it is &=. In other words

dV (c)

= _10p 4 40
7 p~ 2, (40)

now given an assignment rule p(c) = (p*A(c), p**(c),p**(c)), V(c) is given by

V(c) = p*4(c)(5 — 5¢) + p™(c) - 0+ p*(c)(1 — 10c),

31 This property is an envelope condition. We state it formally in Lemma A in Appendix C.
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and its slope is given by
dV (c)

dc
With the help of (41), (40) can be rewritten as

= —5p*(c) — 10p™(c). (41)

1 1
—10p~4 = —5p*A(—) — IOpZQ(E),

10
which reduces to 1 1 1
VR v Z2( Ly 42
P ) = 37 () + P (1) (42)

Equation (42) gives us an optimal p‘A as a function of the assignment rule p.3?

2. Finding an optimal p
With the help of (39) V(1,p,p~4(p)), given by (38), can be rewritten as

1
Vﬂmm%@DZ/mﬂ@H1%Wﬂﬁ- (43)

Now by substituting (43) into (36), the seller’s problem can be rewritten as

max

[p*4(c) (5 — 10¢) + p*2(c) (1 — 20¢)]dc + 1flpzf“(c) (10 — 10¢) 4+ p*2(c) (11 — 20¢)]dc

S —gl~

1
s.t.  —[bp*A(c) + 10p*(c)] is increasing
0 <p?(c) <1 forall z € {24,222} and Yoepan 2yp°(c) =1

Pointwise maximization gives us that p*A(c) = 1 for all ¢, and the optimal assignment rule
is
p(c) = (p*(c) = 1,p™ (c) = 0,p™(c) = 0) (44)

32This example illustrates the interdependence of optimal non-participation assignment rules with the
assignment rules, that is how p~ 4 can depend on p. This feature is novel and does not appear in the earlier
work, (see for instance JMS (1996)), where optimal threats are independent from the way the seller wants
to allocate the goods. Here equation (42) tells us that for different assignment rules, the optimal, from the

seller’s point of view, non-participation assignment rule, is different. For example, for

eai N =e1g oz ay ) (1,0,0) ifce[0,1]
(p (C)vp (C)7p (C))_{ (071’0) 1fc€[%,l]

the optimal non-participation assignment rule is pfA(ﬁ) = % If the assignment rule is instead

(™ (c), 0™ (c), 0™ (c)) = {
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Buyer’'s Payoffs
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p“(c)=0

Buyeﬁs payoff from
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®
0“
)
«
| Y
“‘ Payoff at optimal non-
N\ participation assignment
, ’0 rule: A _
p©(c)=1-10c p°" =05
Figure 9

which is feasible, since irrespective of report, firm A obtains the object with probability 1
and pays the same price, which is equal to 4.5. By substituting (44) into (42), we get that
the optimal non-participation assignment rule is given by

p p) = %or more precisely
p ) = (*(c),p"(c),p™(c)) = (0 L 1).

272

In this example the revenue maximizing assignment rule is ex-post efficient. To see this,
notice that 724 (¢) > 7% (c) and 7%4 (c) > 7*2(c) for all ¢ € [0, 1], so it’s always efficient to sell
the invention to the firm. This efficiency property is rather surprising given the presence
of private information that is statistically independent. The seller’s expected revenue is
4.5. A’s payoff is the b — 5¢ — 4.5 which is exactly equal to its outside option which is
0.5-0+-0.5- (1 —10¢) = 0.5 — 5¢. These payoffs are graphed in Figure 9.

It is interesting to compare this solution to the one when open sourcing (allocation z3)
is not an available option. In this case the optimal assignment rule is

(1,0) ifce 0, 3]
1

p(C)z(pz“(C)vpzl(C)):{ 0,1) ifee[i1]

and trivially the non-participation assignment rule is p~“(p) = (0,1). Then the seller’s
expected revenue is 1.25. This assignment rule is inefficient, since half of the time Firm A

34



does not obtain the invention, whereas it is always efficient that it does. Comparing to the
previous case, we see that the option of open sourcing increases both the seller’s revenue,
(it more than triples), and efficiency. This is despite the fact that open sourcing is never
implemented.

This example highlights an important new insight. When the payoff from non-participation
depends on a buyer’s type, even allocations that are never implemented can crucially affect
the revenue maximizing assignment of the objects. The introduction of the option of open
sourcing increased the revenue of the seller, and made the revenue maximizing assignment
rule ex-post efficient, even though it is never implemented. This example also shows that
optimal non-participation assignment rules can be random.

6. CONCLUDING REMARKS

In this paper we study revenue maximizing auctions when buyers’ outside payoffs depend
on their type. Our analysis shows that key intuitions from earlier work on optimal auctions
fail to generalize. Very often efficiency and revenue maximization are conflicting objectives.
However, here we show that a revenue maximizing mechanism sometimes will allocate the
objects in an ex-post efficient way, and sometimes it will sell “too often”. The broad message
is that type-dependent non-participation payoffs change the nature of the distortions that
arise from the presence of asymmetric information. The designer by creating the “appropri-
ate” outside options can increase both revenue, and the overall efficiency of the mechanism.
This paper also encompasses a large number of important allocation problems as a special
case. Potential applications range from the allocation of airport take-off and landing slots,
to the allocation of positions in teams.

7. APPENDIX A

Proof of Lemma 1%

By the convexity of 77(-,c_;) we have that V; is a maximum of convex functions, so it
is convex, and therefore differentiable a.e. It is also easy to check that the following are
equivalent:

(a) (p,z) is incentive compatible

(b) Pi(ci) € 0Vilcr)

(¢) Ulci, cis (p, ) = Vilei)

We now use these equivalent statements to prove necessity and sufficiency in our Lemma.

(=) Here we use the fact that incentive compatibility implies (b). A result in Krishna
and Maenner (2001) then implies (5). By the convexity of V;, we know that 0V; is monotone,

3 This proof is relatively standard, see for instance, Jehiel, Moldovanu and Stacchetti (1999) and is included
for completeness.

35



SO:

This immediately implies (4).
(«<=) To prove that (4) implies incentive compatibility it’s enough to show that P;(¢;) €
OVi(ci). By (4) and (),

V() - Vile) = [ Rlo)ds
> Pia)(c;—ci)
which shows Pi(¢;) € 0Vi(c;). m

Expected Payment at an Incentive Compatible Mechanism??

Recall that
/ [ZP - fEi(C)] foi(e—i)de_;. (45)

z€7Z

By integrating (45) with respect to ¢;, and by rearranging we get that

[ - / > pOm e~ [ Vilei)des (46)
C

z€Z C

2

Integrating the second condition in (5) over C_; and by changing the order of integration
we get:

Z%(Ci)dci = /[V(Cz,p7 /p si)dsilfi(ci)des

C;

= 7, Cz,p, /P /fz cz dczdsz

= Cz,p, /P Cz Cz dcz

= Vi(eip,p~ //Zp e, ey 2Tl coi) (5@ 1) (e de s Fi(cs)der

C C_ z€Z

Ci,C—4 Fi C;
= V(Clap7 /Zp Ci, C z (867; )fl((Cz))f(C)dC

C z€Z

34This proof is very standard and is included for completeness.
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Combining (46) with last expression, the result follows. m
Proof of Lemma 6
If there exists a point (¢;, c_;) such that z; € arg max J, (¢; ,c—;) and 29 € arg max J, (cf, c—i),
zE ze

then it must be the case that

22
)

8‘]”;?_’6"") > a‘]zlgii_’c_i). If Assumption 5 is satisfied, then we

have that P = which implies that Assumption 4 is also satisfied. m

Proof of Lemma 7

(ci) < ;! (ci)
; = dc

We just need to prove that Assumption 5 is satisfied. For that, suppose that %jf‘i) >

%jj’c*i). By the linearity assumption, we have that B;* [1 + (I;Z((ZD ] > B? [1 + (I;Z((CCZ))) ]

Then, since <1;’((?)) ) > 0 by assumption, we get B;' > B;?, which is equivalent to

i
dz1 (Cz) d=?? (Cl) . . :
e 2 @, under the linearity assumption. m

Proof of Theorem 8
The solution proposed corresponds to pointwise maximization, so the only possibility

that is not optimal is that is not feasible. To check that feasibility is satisfied remember
that

on? (¢, c—4
Pi(ci) = / ZPZ(Cz'yc—i)Z(a;Z)f—i(C—i)dC—i
qu,' z2€Z t
and consider a fixed c_;. In a region of cost realizations where Z € arg max J.(¢), plei, c—i)
zE
does not change (p* = 1), Pi(¢;) is increasing by the convexity of 77(-,c_;). For a given
c; where z; € argmagjz(c;‘_,c_i) and zy € arg max J.(c ey, pP(ci,c) = 1 and
ze 1S
p?2(cit,c;) =1, so P;(c;) is increasing because of Assumption 4. m
Proof of Corollary 9
Let’s denote by zg the allocation where the seller keeps all the objects and consider a fixed
realization of types c. Since 7;°(c) is constant for all 4, its derivative vanishes, and we have
N
that J,,(c) = > m°(c) = Si(c). On the other hand, for every allocation z, its virtual
i=1

surplus is given by

N z C i(c;) —
Jo(c) =Y [Wf(c) + agc(i ) Filei) ) 1} > S.(c) =) 7o),

i=1 filei i=1

Then it is easy to see that the set where the seller keeps the objects,

clzo € argmax S,(c) ¢,
z

is a subset of the set where it would be efficient that she keeps them,{c|zo € argmax Jz(c)}.
z
[
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8. APPENDIX B: AN EXAMPLE WHERE REVENUE DEPENDS NON-LINEARLY IN p.

Suppose there is one buyer and three possible allocations z1, 22, z3 and that ¢ is uniformly
distributed on [0,1]. The payoffs of the allocations are 7*'(¢) = 10 — 10¢, 7*2(¢) = 0
and 7% (c) = —bc, where ¢ € [c,¢]. Then it is easy to that irrespective of p an optimal
non-participation assignment rule is (p~1)* = 1, so the non-participation assignment rule
assigns probability one to allocation z3. An assignment rule p(c) = (p*(c), p*2(c),p*(c))
induces a surplus

V() =V(&pp ') — /P(s)ds

which, in the points where it is differentiable satisfies d\gﬁc) = P(c) = —10p*'(c) — 5p*(c).

The type where the participation constraint binds depends on how P(c), which is the slope

of the payoff from participating in the mechanism, compares to the slope of the payoff from
non-participating, which is given by —5. The critical type ¢* depends non-linearly on p,
and it is given by

¢ if —5< —10p*(0) — 5p*3(0)
C*(Pypfl) = c if —5>—10p* (1) —5p*3(1) ,
c¢* otherwise

where ¢* satisfies that —10p* (¢*”) — 5p®(c* ) < —5 < —10p= (¢*") — 5p®(c¢*" ). Since
V(e ppt) ==5c"(p,p7") + / [~10p™ (¢) — 5p™(c)]dc;
e*(pp~1t)

we have that the objective function is non-linear in the assignment rule p.

9. APPENDIX C: TWO SPECIFIC ENVIRONMENTS WHERE CRITICAL TYPES ARE
INDEPENDENT OF p.

I. Steep Outside Options: Participation Constraints bind at the best type c; = c;.

We now provide the precise conditions for the case of “very responsive” outside options,
and argue that under those conditions (28) are satisfied at ¢ = ¢;.

Recall that we use 75 (¢;) = [ 7 (ci,c—) f—i(c—i)dc—; to denote the expected payoff to
agent ¢ if allocation z is implemented.
Assumption 10 Suppose that outside options are steep, in the sense that for all i € I,
there exists an allocation z¥ € Z~ such that

25
ari () _ dri(e)
de; ~  dg

forallze Z (47)
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and )

ﬁfl (¢;) <7 (c) forall z € Z. (48)
1 ifz=27
0 if not

for all i is an optimal non-participation assignment rule, (b) ¢ = ¢;, for all i, and (c)
S
Ui(e7) =7, ().

7

Proposition 11 Under Assumption 10 it follows that for allp (a) (p~*)* =

Proof. (a)The optimality of p—* follows immediately from (47) and (48).

(b) Now we show that ¢ = ¢;, by establishing that if the participation constraint is
satisfied at ¢; = ¢;, then it is satisfied for all ¢; € C;. This follows from three observations.

(i) Pi(ei) € OVi(e),

(i)

Pi(e) = / 3 (o2 )f-< e

L z€EZ

72

L z€Z

dm ZZL (CZ)
de;

v

S
(i) Vi(e;) > 77" (c)-
Observations (i) and (ii) imply that the derivative of V; is always greater than the
S S
derivative of 7;" . These two, together with (iii) imply that V(¢;) > 7" (¢;) for all ¢; € C;.
S
(c) Finally, it follows immediately that U;(c}) =7, (c;). m

1I. Coezistence of Steep and Flat Outside Options: Participation Constraints bind at
interior types cf € (¢;, Gi).

Suppose that there are two extreme allocations for each buyer, one that gives the flattest
payoff z;-g , and one that gives the steepest, zZ-F . If the flattest option were to be used then
c; = ¢; and if the steepest option were to be used, then ¢ = ¢;. When neither of these two
options is clearly worse, it turns out that an optimal p~*(p) randomizes between the two
options and the participation constraint always binds at the type who is indifferent between
z and z . We now describe the precise conditions and establish the claim.

Z

25
2F'} and that 7' (i), 7' (cz) satisfy 7(01') <

Assumptlon 12 Suppose that Z~% = {z

’L”L

dwdc(ic) < dﬁ"(;ci for all z € Z and ¢; € C; and frfi (¢;) > ﬁfi (¢;)- Suppose also that either

(i) values are private or (ii) the seller can only use non-participation assignment rules that
do not depend on the types of other players (that is p~* € P~ = p~*(c_;) = p~ ).
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Proposition 13 Under Assumption 12 it follows that (a) for all p the critical type is ¢} = ¢
where ¢; satisfies

25 - F
T (&) =7 (&) (49)
. i . . . i Sd7r (cl) i LEN ATt (6)
(b) an optimal p~* given p is determined by the condition (p~"(p))* — == +(1—(p~"(p))* ) =i €
4 - 4 RN
OVi(¢i), and (c) for all p and p~*(p) we have Uy(c}(p,p~"(p)),p~"(p)) = ;" (&) = 7;" (&).

Proof: To prove this Proposition, we first prove the following Lemma:

Lemma A.
) - i) = T ), Torall z€ 27
d(p~) p—i=p—i(p) (p™) p—i=p—i(p)

(50)

Proof. We suppose for simplicity that the derivative % is well defined, (otherwise
we can do all the analysis with subgradients).

Then, differentiating V;(¢;; p, p~%) with respect to (p~%)* we obtain that

aV:(c;: —1i (¥ —1 —1 U . (c* —1 —1 oc* ’ —1i
W(czlp,p ) _ 0Ui(q (p,f ).p7") | [0Ulci(p. "), p7") T (pi'p ).
d(p=*) p~)* e p~)*
(51)
Given an assignment rule p and a non-participation assignment rule p~", we know that at

an optimal mechanism c}(p, p~%) satisfies ¢} (p,p~") € arg m1n — fP Ui(ci,p_i)].
Depending on whether ¢} (p,p™") € (¢;, &), or ¢ (p,p~") = ¢; or ¢;(p,p~") = &, there are
three cases to consider.

Case 1: ¢ (p,p~*) € (¢;, &)

Since ¢ (p, p~*) € arg Il’lll’l - f Pi(s)ds — U;(ci, p‘i)] , an interior solution (which is pre-

cisely the case under 1nvest1gat10n), must satisfy

dVi(e;) _ 90U (cilp, ™), 07" (52)
dei Ci:c;"(pyrfz) de; ci=c; (p,p~*)
Then recall that V;(¢;) = V;i(Gi;p, p f P;(s)ds , which implies that
dVi(¢i * —i
j? =R o). (5)
G lei=cr(p.p=7)

Then, substituting (52) and (53) into (51), we obtain that

dVi(esp,p~) _ OU,(ci(p.p~" (), p~" (1))
d(p=)* p—i=p—i(p) p~*)*

= frf(cf(p,p_i(p))), for all z € Z_i,
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which is what we wanted to show.

Case 2: ¢f(p,p ) =¢

If p and p~'such that ¢} (p, p~*) = ¢; and we change 2*
assignment rule p~* then two things can happen. One possibility is that

oc; (p, ")
Np=)

in that case (51), reduces to (50). Another possibility is that we move to a ¢ in the interior,
1'35

" component of the non-participation

in which case we are back to Case
Case 3: ci(p,p ) =&
This case is identical to the previous one. m
Now, we prove the Proposition.
(a) Because there are only 27 and 2! in Z~/, we can write

Ci
S . F
i

Vilesip,p ) =p "7 (¢ (p,p~ ) + (L= p )7 (¢ (p,p™")) + / Py(s)ds.

e (p,p~H)

Because of the envelope condition proved before, that is (50), we can write

dVi(@ip,p~") OVi(@iip, p")

dp* p~i=p~i(p) Op~ p~i=p~i(p)
T _z2f ke i
= T (Gpp) =7 (G(pp™)) (54)

When p~ is in a neighborhood of 0 then the outside option is flat and ¢; = ¢;. When ptis

in a neighborhood of 1 then the outside option is very steep and ¢ = ¢;. This means that
act (p.p™") _ 0ci(pp)

N R T = 0, and also we get that

pi=1

dVi(ei;p, p%)

dp™ pi
ZS z.F
= 7' (Ez) — 7" (5,) <0
d 7 72'; ) - _25 * _z2F *
dvieip. ) = ) -5 (@)
dp™ pi=

35Note that since both V; and U, are decreasing and convex in ¢;, so changing (p~")* slightly cannot result

in ¢; moving from ¢, to &;:.
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These two inequalities imply that the optimally chosen p~¢, that is p~#(p), is interior, so it

e s .
satisfies the FONC % impitp) 0, because of (54) it implies 7" (c}(p, p~?)) =
F .
ﬁ'izi (ct(p,p™")), from which we get that irrespective of p we have that

S
~ . . . _Z; _Z;
where ¢; satisfies (49). Moreover, because of the assumptions, the functions 7;* and 7’

* 4
¢ = G,

F

cross at most once, so ¢} is uniquely determined.

(1

(b) By (8) it follows immediately that an optimal p~* given p must satisfy that p~(p) an

o
—p(p) T € avi(e).

(c) Is immediate. m
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