
 

 

 

 

DOCUMENTOS DE TRABAJO 
 

Serie Economía 

MULTI-PERIOD HEDGE RATIOS FOR A MULTI-ASSET PORTFOLIO 
WHEN ACCOUNTING FOR RETURNS COMOVEMENT 
 
VIVIANA FERNANDEZ 
 

 
Nº 242 



 
Multi-period hedge ratios for a multi-asset portfolio when accounting for returns co-

movement 
 

Forthcoming in the Journal of Futures Markets Vol. 27 
 

Viviana Fernandez1 
 

Abstract 
 

This article presents a model to select the optimal hedge ratios of a portfolio 
comprised of an arbitrary number of commodities. In particular, returns dependency and 
heterogeneous investment horizons are accounted for by copulas and wavelets, 
respectively. We analyze a portfolio of London Metal Exchange metals for the period July 
1993-December 2005, and conclude that neglecting cross correlations leads to biased 
estimates of the optimal hedge ratios and the degree of hedge effectiveness. Furthermore, 
when compared with a multivariate-GARCH specification, our methodology yields higher 
hedge effectiveness for the raw returns and their short-term components.  
 
JEL: C22, G15; Keywords: hedge ratio, multivariate copulas, wavelets, multivariate 
GARCH. 
 
1 Introduction 
 

The determination of the optimal hedge ratio is an issue of both practical and theoretical 

interest as its impacts hedging effectiveness. Recent contributions to the literature on 

heterogeneous investors and the selection of an optimal hedge ratio has focused on a single 

commodity in isolation (e.g., Lien and Shrestha, 2007; In and Kim, 2006a, 2006 b). This 

article presents a generalization of such an approach, in which we consider the selection of 

optimal hedge ratios for a portfolio comprised of several net positions in commodities (i.e., 

cash position minus a proportion of a futures contract). In particular, we obtain an 

analytical expression for an optimal vector of hedge ratios and a measure of the degree 

hedge effectiveness (HE) for such a portfolio. Towards that end, we utilize wavelet and 
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copula analysis in order to accommodate for the existence of heterogeneous investors and 

asset returns dependency, respectively. 

Our empirical application considers a portfolio composed of cash and futures 

positions on London Metal Exchange (LME) metals for the sample period July 1993-

December 2005. Our portfolio choice is based on the grounds of data availability on cash 

and futures prices at a high frequency. Indeed, wavelet analysis is a computationally 

intensive statistical tool, which requires long time series (e.g., Percival and Walden, 2000; 

Gençay, Whitcher, and Selçuk, 2002). On the other hand, given that the LME data has been 

earlier analyzed (e.g., McMillan, 2005), our conclusions can be contrasted with those of 

previous studies.  

The simulations we carry out to characterize the distribution functions of the hedge 

ratios and the degree of HE are performed under two scenarios: with and without 

accounting for the cross correlations of returns on cash and futures contracts. As mentioned 

above, dependency is handled by copula analysis, a statistical tool that has recently gained 

ground in the finance field to extract the dependence structure from the joint probability 

distribution function of a set of random variables (e.g., Cherubini, Luciano, and Vecchiato, 

2004).  

Indeed, earlier attempts to determine optimal hedge ratios in a multi-asset setting have 

modeled assets returns dependency exclusively by means of either static or dynamic 

correlations. For instance, Lien (1988) focuses on hedging foreign exchange risk of a 

portfolio comprised of positions on Canadian dollars and German marks. Although Lien 

derives an analytical solution to the optimal vector of hedge ratios taking into account the 

covariance structure of spot and futures price changes, no dynamic consideration as to the 

evolution of such covariance structure through time is discussed. In that regard, the article 
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by Gagnon, Lypny, and McCurdy (1998) represents a further contribution to the literature. 

Indeed, the authors consider a portfolio made up of spot and futures positions on the 

Deutsche Mark, the Swiss Franc, and the Japanese Yen, and model their time-varying co-

variability by a trivariate BEKK model.  

We move a step forward and model the joint probability density function of the spot 

and futures positions, not only their covariance structure.2 Indeed, we carry out some 

simulation exercises which show that neglecting the correlation across commodities leads 

to biased estimates of the optimal hedge ratios and the degree of hedge effectiveness. In 

addition, we conclude that commodities markets are driven by the existence of 

heterogeneous investors, as has been documented in recent studies. Furthermore, when 

compared with a multivariate-GARCH specification, we find that our methodology yields 

higher hedge effectiveness for the raw returns (i.e., without accounting for the holding 

period of the investment) and for their lower wavelet-timescales (i.e., short-term 

components). 

This article is organized as follows. Section 2 provides an overview of some recent 

studies on the determination of the optimal hedge ratio. Section 3, which covers 

methodological issues, is divided into three parts. Section 3.1 derives an optimal vector of 

hedge ratios for a portfolio made up of cash and futures positions of several commodities. 

Section 3.2 presents an overview of wavelet analysis, and it provides the definitions of 

wavelet variance and covariance. Section 3.3 in turn offers an introduction to copulas and 

an algorithm to simulate dependent asset returns. Section 4 presents an empirical 

application to cash and futures positions on metals. In particular, Section 4.1 presents 

descriptive statistics of the data whereas Section 4.2 reports simulations of the distribution 
                                                 
2 If returns are not jointly normal, their covariance structure may not be an adequate measure of dependency.  
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functions of optimal hedge ratios and the degree of effectiveness of the hedging strategy, 

with and without accounting for returns cross correlations. Section 4.3 in turn compares, in 

terms of hedge effectiveness, the copula approach with the more standard tool of 

multivariate GARCH models. Finally, Section 5 presents our main conclusions. 

2 Background 

The existent literature on the determination of the optimal hedge ratio is quite broad, 

and early contributions in this area can be traced back to the late 1970’s. For instance, 

Ederington (1979) resorted to variance minimization of the hedged portfolio to obtain a 

minimum-variance (MV) hedge ratio. Alternative derivations of the hedge ratio, which are 

consistent with mean-variance analysis, involve objective functions where both the 

expected return and the variance of the hedged portfolio are considered (e.g., Howard and 

D’Antonio, 1984; Ceccheti, Cumby, and Figlewski, 1988; Hsin, Kuo, and Lee, 1994). Such 

an optimal mean-variance hedge ratio will be equivalent to the MV hedge ratio if the 

futures price is a martingale process.  

A key point to consider, nevertheless, is that the mean-variance hedge ratio approach 

will be consistent with expected utility maximization only if either the utility function is 

quadratic or returns are jointly normal. In order to work under more general assumptions, 

alternative optimization methods have been recently considered: mean-extended-Gini 

minimization and generalized-semivariance minimization, among others. Chen, Lee, and 

Shrestha (2006), in press, discuss these alternative procedures, and test whether the pure 

martingale and joint normality hypotheses hold for spot and futures returns. For a set of 25 

commodities, Chen et al. find that joint normality tends to be rejected for all the 

commodities when the hedging horizon is relatively short, whereas it tends to hold only for 
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a few of them when the hedging horizon is longer. As to the pure martingale hypothesis, 

they conclude that it holds for almost all of the commodities.  

 Simple and widely utilized approaches to compute the hedge ratio are the naïve one-

to-one and ordinary least squares (OLS). The naïve hedge ratio consists of taking an equal 

and opposite position in futures relative to the position in cash, whereas the OLS-based 

hedge ratio is obtained from a linear regression model. Both routes assume that the hedge 

ratio will remain constant through time. However, for the past 20 years, the finance 

literature has reported in several studies the existence of time-varying (conditional) 

volatility and volatility clustering in assets returns. Hence, recent studies have resorted to 

GARCH-type (e.g., McMillan, 2005; Gagnon, Lypny, and McCurdy, 1998; Lee, 1999) and 

stochastic volatility models (e.g., Lien and Wilson, 2001) to characterize the behavior of 

hedge ratios over time  

A novel approach, also aimed at capturing the time-varying nature of a hedge ratio, is 

wavelet analysis. This is a refinement of Fourier analysis which makes it possible to 

decompose a time series into its high- and low-frequency components (i.e., short- and long-

term variation, respectively). Two recent studies by In and Kim (2006a, 2006b) have 

pioneered the use of this mathematical methodology to obtain a timescale decomposition of 

the hedge ratio and the hedge effectiveness. They conclude that there is a feedback between 

spot and futures markets regardless of the timescale. Also a recent application in this area 

can be found in Lien and Shrestha (2007).  

3 Theoretical framework 

3.1 Optimal hedge ratio 

Let us consider an investor who wishes to hedge some of their cash position invested on 

ωi unit of asset i by holding futures contracts: 
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where c
ir  and f

ir  are the returns on the cash and futures positions on asset i, respectively, 

and βi represents the hedge ratio.  

 Furthermore, let us assume that the investor hold n such cash positions, which are 

hedged with futures contracts. Then his/her portfolio return rp is given by: 

 fc rβrω ′−′=pr          (1) 
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The optimal vector of hedge ratios solves the equation 
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That is, 

 ωΩΩβ ′
= − cf1f* )(  

 Without loss of generality, and as is customary in the literature, let us assume that 

ωi=1, ∀i=1,.., n. That is, 

 ιΩΩβ ′
= − cf1f* )(         (3) 

where ι is an n×1 vector of ones. 

 Notice that if n=1, we have the well-known result 
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(See for instance, McMillan, 2005 and Chen, Lee, and Shrestha, 2006, in press).  
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 That is, each beta can be estimated from a linear regression of the cash return on the 

futures returns by ordinary least-squares (OLS). 

Equation (3) can be made consistent with the mean-variance framework if we 

consider, for instance, the mean-variance expected utility maximization problem utilized by 

Hsin, Kuo and Lee (1994) and In and Kim (2006b): 

 Max β(E(rp), σp; A)=E(rp)−0.5A 2
pσ  

where A is a parameter that measures the degree of the risk aversion (A>0).  

In our notation, we seek to 
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Maxβ )''(E fc rβrι − − )2(A5.0 βΩι'βΩβ'ιΩι' cffC −+    (4) 

From the first-order conditions, we obtain: 
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Therefore, if A→∞ (i.e., individuals are infinitely risk averse) or E(rf)=0 (i.e., future prices 

follow a simple martingale process), we are back to the result of equation (3).  

 Under our framework, we can generalize the definition of hedge effectiveness (HE) 

utilized by In and Kim, op cit.: 
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where Var(rp) is given by expression (2) and )r(Var c
p  is the variance of an equally-

weighted portfolio invested on spot positions only.  

 Expression (6) boils down to In and Kim’s HE for n=1, in which case 2
sfHE ρ= , 

i.e., the square of the correlation coefficient between the returns on the stock and futures 

prices.  

 When neglecting cross correlations between the spot and futures positions of the 

different assets, i.e., when OLS hedge ratios are utilized, equation (6) boils down to  
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where “diag” indicates that only the elements of the main diagonal are considered and the 

elements off the main diagonal are all set to zero.  

 In order to have another benchmark with which to compare our minimum-variance 

hedge ratio, we compute the HE of the naïve hedge ratio. This equals 1 for all the futures 
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positions in the portfolio. We consider two cases: one in which we account for the 

diversification benefits of having several positions in the portfolio, and another in which we 

do not. In the first case, the HE equals: 

ιΩι
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whereas in the second case 
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3.2 Heterogeneous investors and wavelet analysis 

A subject, which has received attention in recent studies and which also has important 

implications for portfolio management, is the existence of heterogeneous investors. In a 

recent article, Connor and Rossiter (2005) point out that, in the context of commodity 

markets, long-horizon traders will essentially focus on price fundamentals that drive overall 

trends, whereas short-term traders will primarily react to incoming information within a 

short-term horizon. Hence, market dynamics in the aggregate will be the result of the 

interaction of agents with heterogeneous time horizons. In order to model the behavior of 

financial series at different time spans, researchers have resorted to wavelet analysis, a 

mathematical tool developed in the early 1990’s (e.g., Li and Stevenson 2001; Gençay, 

Whitcher, and Selçuk 2003, 2005; Karuppiah and Los, 2005; Connor and Rossiter, 2005; 

Fernandez, 2005; Fernandez, 2006a, 2006b; In and Kim, 2006a, 2006b; Fernandez and 

Lucey, 2007).  

3.2.1. The discrete wavelet transformation 

 Wavelets are a refinement of Fourier analysis, which make it possible to decompose 

a time series into high- and low-frequency components (see, for instance, Percival and 
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Walden 2000). High-frequency components describe the short-term dynamics, whereas 

low-frequency components represent the long-term behavior of the series. Wavelets are 

classified into father and mother wavelets. Father wavelets capture the smooth and low-

frequency parts of a signal, whereas mother wavelets describe its detailed and high-

frequency parts.  

 Applications of wavelet analysis usually utilize a discrete wavelet transform 

(DWT). The DWT maps a vector of n observations to a vector of n smooth and detail 

wavelet coefficients,3 which make it possible to capture the underlying smooth behavior of 

the data and the deviations from it. Given J levels, when the length of the data, n, is 

divisible by 2J, there are n/2 wavelet coefficients at the finest scale 21, n/22 coefficients at 

the next finest scale 22, and etcetera.4 The number of wavelet coefficients at a given scale is 

related to the width of the wavelet function. This implies that the lowest scales will mimic 

the short-term fluctuations of the original time series.  

 In particular, wavelet analysis enables us to decompose a time series into its 

fundamental components, where each of them contains information regarding the 

variability of the data at a particular scale. Such a decomposition is called a multi-

resolution decomposition (MRD) of a time series y(t), which is the sum of the orthogonal 

components SJ(t), DJ(t), DJ–1(t),.., D1(t) from scales 1 through J: 

 y(t) ≈ SJ(t)+DJ(t)+DJ–1(t)+...+D1(t),      (8) 

where )t(SJ  and )t(DJ  are denominated the smooth and detail components, respectively. 

Wavelet scales are such that times are separated by multiples of 2j, j=1,.., J. For instance, 

                                                 
3 sJ,k and dj,k, j=1,2,…, J, respectively, where J is the total number of levels. At level j=1, ..., J, the n/2j-vector 
of the detail wavelet coefficients djk is associated with changes on a scale of length 2j–1, whereas the n/2J-
vector of smooth wavelet coefficients sJk is associated with averages on a scale of length 2J. 
4 These are denominated dyadic scales (see Percival and Walden, 2000, chapter 1).  
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for daily data, scale 1 is associated with 2-4 day dynamics, scale 2 with 4-8 day dynamics, 

scale 3 with 8-16 day dynamics, etcetera.  

An application of wavelets, which is of particular interest to this study, is the 

decomposition of the variance of a time series into its time-scale components. Specifically, 

wavelet variance analysis enables us to identify which scales are the most important 

contributors to the overall variability of the data (Percival and Walden, 2000). In particular, 

let x1, x2,..., xn be a time series of interest, assumed to be a realization of a stationary 

process with variance 2
Xσ . If )( j

2
X τυ  denotes the wavelet variance at scale τj≡2j−1, then the 

following relationship holds:  
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where the square root of the wavelet variance is expressed in the same units as the original 

time series.  
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5 ⎣ ⎦x  and ⎡ ⎤x  represent the greatest integer ≤x and the smallest integer ≥x, respectively. The boundary 
coefficients are those formed by putting together some values from the beginning and the end of the time 
series.  
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 Given that the DWT de-correlates the data, the non-boundary wavelet coefficients at 

a given level (dj) are zero-mean Gaussian white-noise processes. 

 Similarly, the unbiased wavelet covariance between time series X and Y, at scale j, 

can be defined as 
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XY dd
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provided that jj Ln ′>′ . 

 The sample properties of the DWT variance and covariance estimators are, 

however, inferior to those of non-decimated discrete wavelet transforms, also known as 

stationary wavelet transforms. The non-decimated DWT is a non-orthogonal variant of the 

DWT, which is time-invariant. That is, unlike the classical DWT, the output is not affected 

by the date at which we start recording a time series. In addition, the number of coefficients 

at each scale equals the number of observations in the original time series. A non-

decimated form of the DWT is known as the maximal overlap DWT (MODWT).6 The 

unbiased MODWT estimator of the wavelet variance is given by 
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where 2
t,jd

~
 is the MODWT-wavelet coefficient at level j and time t, Mj≡n–Lj+1, 

1)1L)(12(L j
j +−−≡  is the width of the MODWT filter for level j, and n is the number of 

observations in the original time series. While there are n MODWT-wavelet coefficients at 
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each level j, the first (Lj–1)-boundary coefficients are discarded. (Retaining such boundary 

coefficients leads to a biased estimate).  

 Likewise, the unbiased MODWT estimator of the wavelet covariance can be 

obtained as  
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A wavelet-based correlation coefficient between X and Y at scale j can be defined as 
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3.2.2 Time-scale decomposition of the hedge ratio and hedge effectiveness 

 The minimum-variance hedge ratio at scale j can be determined as 
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by using the notation of the previous sub-section.  

Likewise, the HE at scale j can obtained as  
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In this regard, we can think of the optimal hedge ratio at scale j in (14) as the result of a 

utility maximization process of an investor whose time horizon is given by τj: 

Max )( jτβ ))()'()('(E jjj ττ−τ fc rβrι − ))()(2)()()()((A5.0 jjjjjj ττ−τττ+τ βΩι'βΩ'βιΩι' cffC  
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for the special case where A→∞ or E(rf(τj))=0.  

 In this case, the asset return at scale j represents the scale-j component of a multi-

resolution decomposition (MRD) of the original return series. As mentioned earlier, a MRD 

enables us to decompose a time series into its high- and low-frequency components. The 

former will be associated with the short-term fluctuations of a return series whereas the 

latter with its long-term fluctuations. In other words, the upper scales of the data will be 

associated with the trend components of the spot and futures prices. And, therefore, such 

scales will be relevant to investors with longer-term horizons. By contrast, the lower scales 

will be the focus of interest of investors with short-term horizons. 

3.3 Copulas 

Copulas have arisen as a new technique to measure the co-movement between financial 

markets. They are uniform distributions which enable us to extract the dependence structure 

from the joint probability distribution function of a set of random variables and, at the same 

time, to separate the dependence structure from the univariate marginal behavior. Examples 

of recent applications of copulas in finance are Cherubini and Luciano (2002, 2003a, b), 

Embrechts, Lindskog and McNeil (2003), Giesecke (2004), Junker, Szimayer, and Wagner 

(2006), Pachenko (2005), and Rosenberg and Schuermann (2006). A thorough discussion 

on the use of copulas in finance is provided in the textbook by Cherubini, Luciano, and 

Vecchiato (2004). In addition, the survey article by Frees and Valdez (1998) provides an 

excellent background on the use of copulas in a more general context.  

A copula is defined as a multivariate distribution function (df) F of random variables 

X1,..., Xn with standard uniform marginal cumulative distribution functions F1,..., Fn (i.e., 

margins). That is, Xi~Fi, i=1,..., n.  
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 In general, let us consider an n × 1 random vector X with a joint df F and continuous 

margins Fi, which are not necessarily standard uniform.7 Then 

 F(x1,...,xn) =Pr(X1≤x1, ..., Xn≤xn) 

   =Pr(F1(X1)≤F1(x1), ..., Fn(Xn)≤Fn(xn)) 

=C(F1(x1),..., Fn(xn))      (16) 

 Equation (16) shows that the joint df F can be described by the margins F1,.., Fn and 

the copula C. The latter captures the dependence structure among X1,..., Xn. The existence 

of the function C is established by Sklar’s theorem (see Nelsen, 1999, section 2.10). 

 Given that we consider a portfolio composed of an arbitrary number of assets, we 

need a multivariate copula to capture the dependence structure. To that end, we resort to a 

multivariate normal copula, a widespread choice in the finance field which is 

computationally tractable when the number of assets in the portfolio is relatively large. For 

its implementation, we utilize the Monte Carlo simulation algorithm presented by Wang 

(1999) in his discussion on Frees and Valdez (1998)’s article. This is as follows. Let 

(X1,..,Xn) be a set of correlated random variables with margins 
1XF ,..,

nXF  and Kendall’s tau 

τij=τ(Xi,Xj) or Spearman’s rank correlation RankCorr(Xi,Xj).8 If their dependence structure 

can be adequately described by a multivariate normal copula, a random sample of 

(X1,...,Xn) can be simulated as follows: 

Step 1: Convert the given Kendall’s tau or rank correlation coefficient to the pair-wise 

Pearson correlation coefficient, ⎟
⎠
⎞

⎜
⎝
⎛ π=⎟

⎠
⎞

⎜
⎝
⎛ τ
π

=ρ )X,X(RankCorr
6

sin2
2

sin jiijij , and construct 

                                                 
7 A well-known result in statistics establishes that if Xi is a random variable with a continuous distribution 
function Fi, the random variable Fi(Xi) is standard-uniformly distributed, i.e., Fi(Xi)~U(0,1).  
8 One disadvantage of the Pearson correlation coefficient, relative to Kendall´s τ and Spearman’s rank 
correlation, is that it is not invariant under non-linear strictly increasing transformations of the data. 
Therefore, Kendall´s τ and Spearman’s rank correlation are preferable as dependence measures.  
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the lower triangular matrix B, such that Σ=BB′,where Σ is the matrix of pair-wise Pearson 

correlation coefficients of (X1,.., Xn).  

Step 2: Generate an n × 1 vector Y of standard normal variables 

Step 3: Let Z=BY and set ui=Φ(Zi), i=1,..., n, where Φ(.) is the df of a standard normal.  

Step 4: Set )u(FX i
1

Xi i

−= , i=1,.., n.  

In order to model the margins 
iXF , i=1,.., n, we resort to a semi-parametric 

procedure discussed by Carmona (2004). Specifically, a generalized Pareto distribution is 

fitted to the tails,9 while the empirical distribution is used to model the center of the 

distribution. In other words, parametric and non-parametric approaches are used to model 

the tails and the center of the distribution, respectively.  

It is worth stressing that, due to Sklar’s theorem, the multivariate normal copula 

generates a multivariate standard normal distribution if and only if the margins are standard 

normal. As has been well-documented in the finance literature, individual asset returns 

rarely are normally distributed. Therefore, Carmona’s approach enables us to capture the 

presence of fat tails and non-zero skewness in individual returns. The normal copula is 

used, as previously stated, for the sake of computational parsimony. However, the joint 

probability distribution of spot and futures returns will most likely differ from a 

multivariate normal distribution, as the margins are allowed to departure from normality. 

                                                 
9This is given by 

⎪⎩

⎪
⎨
⎧

=ζ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−−≠ζ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
ζ

+−=
ζ−

βζ 0,
)u(

yexp1;0,
)u(

y11)y(H
/1

)u(, , where β(u)>0, and y≥0 

when ζ≥0, and 0≤y≤−β(u)/ζ when ζ<0 (see, for example, Coles, 2001). If ζ>0, F is said to be in the Fréchet 

family and Hζ,β(u) is a Pareto distribution. In most applications of risk management, the data comes from a 

heavy-tailed distribution, so that ζ>0.  
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This is important given the evidence found by Chen, Lee and Shrestha (2006, in press) on 

the non-normality of spot and futures returns, referred to in the Background.  

4 Empirical results 

4.1 The data 

The data series utilized in this study are daily returns on cash and futures on London 

Metal Exchange (LME) metals (July 1993-December 2005). The sampled metals include 

aluminum, copper, lead, nickel, zinc, and tin. Cash and 3-month futures are those quoted by 

the LME. Descriptive statistics are presented in Table 1. As we see, all return series exhibit 

fat tails and negative skewness, suggesting a departure from normality.10 

The impact of the wavelet-scale on returns cross-correlations is reported in Table 2. As 

we see, the correlation matrix tends to be stable over scales. However, we observe that the 

co-movement between spot and futures markets increases at the upper scales. For instance, 

the correlation of the returns on the nickel cash and futures contracts increases from 0.97 at 

scale 2 to 0.99 at scale 4. In the raw data, the correlation coefficient between the two series 

is 0.96. Such features of the data highlight the importance of focusing on different 

timescales or investment horizons.  

 Table 3 presents wavelet-based hedge ratios for the six metals categories, based on 

equation (3), which accounts for cross correlations (minimum-variance hedge ratio), and 

equation (3′), which does not (OLS hedge ratio). In general, we see that neglecting cross 

correlations translates into an underestimation of the hedge ratios, particularly in the raw 

data and at the lowest scales. As the scale increases, the hedge ratios approximate 1 (in 

                                                 
10 All the programming involved in this and the following subsections was implemented in S-Plus 7.0 

and its modules S+Wavelets 2.0 and S+Finmetrics 2.0.  
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some cases, they even slightly exceed 1), regardless whether we take cross correlations into 

account. This result is in agreement with In and Kim (2006a, 2006b)’s findings.  

 The degree of hedge effectiveness (HE), as defined in equations (6) through (7′), is 

reported in Table 4. If we focus on the first two rows of the table, we observe that HE tends 

to 1 as we move to the upper scales 4 and 5, even when cross correlations are ignored (i.e., 

2
sfHE ρ= ). Again, this is congruent with In and Kim’s conclusions. However, HE is greater 

and closer to 1 when the portfolio diversification gains of having several net positions are 

taken into consideration (e.g., scales 3-5). For instance, at scale 5, the computed HE is 0.99 

when accounting for cross correlations, whereas it reaches only 0.93 when they are 

disregarded. Rows three and four of Table 4 report the HE for the naïve-hedge ratio with 

and without accounting for cross correlations. As we see, the minimum-variance hedge 

ratio outperforms the naïve estimate, after accounting for portfolio diversification gains, at 

all scales. Similarly, the OLS hedge ratio is preferable to its naïve counterpart for the 

single-commodity portfolio case. In this regard, our results are congruent with those 

reported by In and Kim (2006a) in their in-sample comparisons of hedge effectiveness of 

naive, OLS and wavelet (minimum variance) hedge ratios (Table 2 in their article).  

 In order to have a more complete picture of the implication of the existence of 

heterogeneous investors to hedge effectiveness, we evaluate the utility function 

)''(E fc rβrι − − )2(A5.0 βΩι'βΩβ'ιΩι' cffC −+  at different estimates of the hedge 

ratios⎯i.e., minimum variance, OLS, and naïve, and timescales of the data. The expected 

values of returns are replaced by the median of the wavelet coefficients at each 

corresponding timescale11, whereas the wavelet-based variance-covariance matrices are 

                                                 
11 We use the median, rather than the mean, because is more robust in the presence of outliers. 
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computed as described in Section 3.2.2. The results are reported in Table 5. The magnitudes 

of the risk-aversion parameter, A, are the same as those utilized by In and Kim (2006a), in 

addition to the value of 500, which would represent an extremely high-risk averse 

individual.  

 The simulations exhibit some distinctive patterns. First of all, utility tends to be 

monotonically increasing with the timescale, with the exception of low risk-averse 

individuals, whose maximum level of utility is attained at the lower scales (i.e., scale 2). 

This finding implies that their hedging horizon tends to be short. Second, very high-risk 

averse individuals will select longer-term hedging (i.e., scale 5). And, finally, the 

discrepancy between the investor’s welfare yielded by the three different hedging methods 

becomes more apparent as the degree of risk aversion increases. For instance, the utility 

value obtained from the MV and OLS hedge ratios do not differ much for A=0.001, 0.5, 

and 1, but they noticeably do for A=100 and 500.Our first two findings coincide with In 

and Kim’s op cit in their analysis of one-single commodity portfolio, but they only report 

the minimum-variance case. 

4.2 Simulations 

In this section, we analyze the behavior of the hedge ratios and the degree of HE 

beyond the sample. In doing so, we resort to the mathematical tools of wavelets and 

copulas. We consider two scenarios: one in which cross correlations of the net positions in 

the portfolio are neglected, and another in which they are taken into account. Returns 

dependency is modeled by a multivariate normal copula and Carmona’s semi-parametric 

method to fit the marginal distributions, as discussed in Section 3.3. As in the previous 

subsection, wavelets are utilized to quantify the impact of the time horizon on the portfolio 

investment.  
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 Table 6 reports the simulation results based on 500 iterations12 for the hedge ratios. 

With the exception of aluminum, the mean hedge ratio tends to be higher when cross 

correlations are taken into consideration. In addition, we find that the empirical 

distributions exhibit more dispersion—as measured by the interquartile range, which equals 

the third minus the first quartile––when accounting for cross correlations. In general, there 

is no regularity regarding the magnitude of the quartiles of the different empirical 

distributions under either scenario. For instance, in the raw data, the first quartile of 

aluminum is smaller when cross correlations are taken into consideration (0.59) than when 

they are not (0.64), whereas for lead the opposite holds (1.1 versus 1.07, respectively). 

However, a distinctive property we find is that the maximum hedge ratio is greater when 

accounting for cross correlations, whichever the commodity is. And, that the maximum 

hedge ratio increases as we move to the upper scales.  

Descriptive statistics of the simulation results for hedge effectiveness (HE) are 

reported in Table 7.13 Panel (a) characterizes the HE of the minimum-variance and naïve 

hedge ratios when accounting for returns dependency, whereas Panel (b) reports the 

corresponding results for the OLS and naïve hedge ratios when dependency is ignored. The 

evidence found was to be expected. Indeed, if we look at the left-hand side of Table 7 (i.e., 

minimum-variance (MV) versus OLS hedge ratios), we see that the empirical distribution 

of the HE when cross correlations are accounted for is always to the right to that of the HE 

when cross correlations are disregarded. That is, holding several net commodity positions 

                                                 
12 The computer time required to produce the table was about 2 hours on a Pentium 4.0 with 768 MB of 
RAM.  
13 For the sake of computational time, the number of simulations was reduced to 100. Indeed, the time 
required to produce the output of the table approached 4 hours. 
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contributes unambiguously to risk reduction. Similar conclusions are drawn for the naïve 

case. 

In order to verify whether there are statistical differences between the HE of the MV 

hedge ratio and a more parsimonious approach, such as the naïve one, we conduct a test of 

difference in mean of the HE with and without accounting for returns dependency (Panels 

(a) and (b) of Table 8, respectively). As we see, the MV-hedge ratio approach provides with 

a higher HE than the naïve one, in either case, at all scales of the data. However, the 

magnitude of the statistic tends to decrease as we move to the upper scales. This suggests 

that at longer-term horizons the naïve approach tends to performs relatively better.  

 
4.3 An alternative methodology to measure hedge effectiveness: MGARCH models 
 
 The aim of this section is to compare our methodology to others that have been used 

in the literature to assess hedge performance, such as multivariate GARCH (MGARCH) 

models. Specifically, we focus on two commodities: petroleum and aluminum. These two 

commodities have been previously studied by Lien and Wilson (2001) and MacMillan 

(2005), respectively.  

 For the case of petroleum spot and futures returns, we jointly analyze their behavior 

and that of spot and futures energy indices by means of a diagonal VEC (DVEC) model. 

These commodity indices are constructed by Goldman Sachs, and they cover the sample 

period 1983-2005 at a weekly frequency. The aluminum spot and futures data series are 

those previously utilized in our study.  

 The econometric specification we consider is of the general form: 

 tlt

L

0l
lt εrβcr ++= −

=
∑   t=2, …, T     (17) 
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where rt is a k × 1 vector of returns, c is a k × 1 vector of constant terms, rt−1 is an m × 1 

vector of first lags, β is a k × m matrix containing the coefficients on rt−l, and εt is a k × 1 

white-noise vector with zero mean. The matrix variance-covariance of εt in a DVEC(p, q) is 

given by 

 jt

q

1j
jitit

p

1i
i0t )'( −

=
−−

=

⊗+⊗+= ∑∑ ΣBεεAAΣ      (18) 

where A0, Ai (i=1, 2, …, p) and Bj (j=1, 2,.., q) are k × k matrices, Σt and εt−jεt−j′ are 

symmetric matrices, and ⊗ denotes the Hadamard product (e.g., Zivot and Wang, 2003, 

chapter 13).  

A particular case of (18) is when p=q=1, i.e., DVEC(1,1), which turns out to fit the 

data well. Table 9 shows some diagnostic tests for the petroleum and energy system (Panel 

(a)) and the aluminum equations (Panel (b)). According to the Shapiro and Wilk statistic, 

normality is rejected in all equations except for that of the energy futures index. As stated 

earlier, normality is usually rejected in individual returns series. On the other hand, no 

evidence of missing ARCH effects is found at the 1-percent significance level.  

The simulations carried out in this section are as follows. We generate artificial data 

from the corresponding DVEC(1,1) models by assuming that these are a reasonable 

approximation of the true data generating process, as Table 9 suggests. We next compute 

the hedge effectiveness (HE) ratio accounting for the dependence of the returns series, 

according to equation (6). We repeat this exercise 500 times. Similarly, we utilize the 

copula technique of Section 3.3 to generate returns artificial data and compute the HE ratio 

500 times. The outcome of our simulations is reported in Table 10. In particular, we 

conduct a difference-in-mean test to verify whether one method statistically outperforms 
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the other, on average. The evidence shows that when looking at the raw data, i.e., without 

distinguishing between investment horizons, and by assuming that the data is generated by 

a normal copula with generalized Pareto margins, an investor obtains a higher HE ratio than 

if he/she assumes a DVEC(1,1) model as the true data-generating process. This is 

particularly the case for aluminum: the copula-HE ratio equals 0.41 whereas that yielded by 

the DVEC(1,1) model amounts to only 0.35.  

If we decompose the data according to investment horizons, we find that copulas 

outperforms the DVEC(1,1) model at scales 1 through 3 for aluminum, and at scales 1 and 

2 for petroleum and energy. For the latter, at scale 3 both methods perform identically in 

statistical terms at the 10-percent significance level. At scales 4-5 we find mixed evidence. 

Indeed, at the 1-percent significance level, copulas and the DVEC(1,1) model are 

equivalent in terms of hedge effectiveness at scale 4 for petroleum and energy, whereas for 

aluminum the DVEC(1,1) specification seems more suitable. At scale 5, copulas are 

unambiguously a second-best choice in either case. 

In sum, it appears that copulas are a more powerful tool to model returns 

dependency than a multivariate-GARCH model in the raw data and at its lower scales, 

based on simulations of hedge effectiveness. At the higher scales of the data, however, the 

evidence is mixed and it may be the case that a multivariate-GARCH model yields higher 

hedge effectiveness than copulas. In other words, the performance of copulas relative to a 

multivariate-GARCH specification may depend upon the holding period of the investment. 

5 Conclusions 

 In this article, we develop an analytical framework to select the optimal hedge ratios 

for a portfolio comprised of an arbitrary number of net positions in commodities. In doing 

so, we explicitly model returns dependency by resorting to copulas, which enables us to 
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account for all pair-wise correlation coefficients across cash and futures positions. In 

addition, we consider the existence of heterogeneous investment horizons by resorting to 

wavelets. Our empirical application deals with a portfolio composed of cash and futures 

positions on London Metal Exchange (LME) metals (aluminum, copper, lead, nickel, zinc, 

and tin) for the sample period July 1993-December 2005. Our simulations show that the 

hedge effectiveness provided by a portfolio of net positions of several commodities is 

greater than that of a single net position. This represents evidence in favor of diversification 

gains.  

 In order to enrich our analysis, we carry out some simulations to compare copulas 

with a multivariate GARCH model, in terms of their hedge effectiveness. To that end, we 

analyze the petroleum and energy spot and futures indices elaborated by Goldman Sachs 

and the LME aluminum data. We find that copulas appear to be a more powerful tool to 

model returns dependency than a multivariate-GARCH model in the raw data and at its 

lower scales. At higher scales of the data, however, the evidence is less clear-cut and it is 

possible that a multivariate-GARCH model yields higher hedge effectiveness than copulas. 
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Tables 
 

Table 1 Returns on sampled metals: July 1993-December 2005 
 

 Aluminum Aluminum Copper Copper Lead Lead 
 3months Cash 3month Cash 3month Cash 

Minimum –0.082 –0.067 –0.110 –0.104 –0.100 –0.105 
1st Qu –0.005 –0.005 –0.007 –0.008 –0.007 –0.009 
Median 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 

3rd Qu. 0.006 0.006 0.007 0.008 0.008 0.009 
Maximum 0.061 0.063 0.079 0.070 0.060 0.093 

Excess kurtosis 4.663 3.068 4.928 4.264 3.404 3.325 
Skewness –0.338 0.184 –0.287 –0.255 –0.368 –0.112 

Observations 3,261 3,261 3,261 3,261 3,261 3,261 
 Nickel Nickel Zinc Zinc Tin Tin 
 3months Cash 3month Cash 3month Cash 

Minimum –0.144 –0.141 –0.124 –0.127 –0.113 –0.111 
1st Qu. –0.010 –0.010 –0.006 –0.006 –0.005 –0.006 
Median 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 

3rd Qu. 0.010 0.010 0.006 0.007 0.006 0.006 
Maximum 0.105 0.107 0.072 0.073 0.072 0.070 

Excess kurtosis 4.552 4.059 6.903 7.264 8.205 6.449 
Skewness –0.221 –0.171 –0.558 –0.614 –0.689 –0.476 

Observations 3,261 3,261 3,261 3,261 3,261 3,261 
 
Note: The data source is Datastream, and the returns are daily.  
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Table 2 Wavelet-based correlation coefficients 
 

Raw data 
 AL3MTH ALCASH CU3MTH CUCASH PB3MTH PBCASH NI3MTH NICASH ZN3MTH ZNCASH SN3MTH SNCASH
AL3MTH 1.00 0.69 0.62 0.60 0.47 0.44 0.47 0.46 0.57 0.56 0.41 0.41 
ALCASH 0.69 1.00 0.46 0.44 0.35 0.33 0.32 0.31 0.41 0.40 0.31 0.31 
CU3MTH 0.62 0.46 1.00 0.94 0.50 0.46 0.48 0.47 0.55 0.53 0.39 0.37 
CUCASH 0.60 0.44 0.94 1.00 0.49 0.47 0.46 0.46 0.53 0.52 0.39 0.37 
PB3MTH 0.47 0.35 0.50 0.49 1.00 0.93 0.42 0.42 0.56 0.55 0.39 0.38 
PBCASH 0.44 0.33 0.46 0.47 0.93 1.00 0.40 0.40 0.53 0.53 0.36 0.35 
NI3MTH 0.47 0.32 0.48 0.46 0.42 0.40 1.00 0.96 0.46 0.45 0.39 0.37 
NICASH 0.46 0.31 0.47 0.46 0.42 0.40 0.96 1.00 0.45 0.44 0.38 0.36 
ZN3MTH 0.57 0.41 0.55 0.53 0.56 0.53 0.46 0.45 1.00 0.97 0.41 0.40 
ZNCASH 0.56 0.40 0.53 0.52 0.55 0.53 0.45 0.44 0.97 1.00 0.39 0.39 
SN3MTH 0.41 0.31 0.39 0.39 0.39 0.36 0.39 0.38 0.41 0.39 1.00 0.96 
SNCASH 0.41 0.31 0.37 0.37 0.38 0.35 0.37 0.36 0.40 0.39 0.96 1.00 

 
Scale 2 

 AL3MTH ALCASH CU3MTH CUCASH PB3MTH PBCASH NI3MTH NICASH ZN3MTH ZNCASH SN3MTH SNCASH
AL3MTH 1.00 0.72 0.63 0.60 0.50 0.47 0.47 0.47 0.57 0.55 0.41 0.41 
ALCASH 0.72 1.00 0.47 0.45 0.38 0.37 0.36 0.36 0.43 0.42 0.30 0.31 
CU3MTH 0.63 0.47 1.00 0.94 0.51 0.48 0.48 0.48 0.55 0.53 0.38 0.36 
CUCASH 0.60 0.45 0.94 1.00 0.49 0.47 0.46 0.47 0.52 0.51 0.38 0.36 
PB3MTH 0.50 0.38 0.51 0.49 1.00 0.94 0.41 0.42 0.59 0.58 0.42 0.41 
PBCASH 0.47 0.37 0.48 0.47 0.94 1.00 0.41 0.42 0.57 0.56 0.38 0.37 
NI3MTH 0.47 0.36 0.48 0.46 0.41 0.41 1.00 0.97 0.49 0.48 0.41 0.39 
NICASH 0.47 0.36 0.48 0.47 0.42 0.42 0.97 1.00 0.48 0.48 0.40 0.39 
ZN3MTH 0.57 0.43 0.55 0.52 0.59 0.57 0.49 0.48 1.00 0.97 0.40 0.39 
ZNCASH 0.55 0.42 0.53 0.51 0.58 0.56 0.48 0.48 0.97 1.00 0.39 0.39 
SN3MTH 0.41 0.30 0.38 0.38 0.42 0.38 0.41 0.40 0.40 0.39 1.00 0.97 
SNCASH 0.41 0.31 0.36 0.36 0.41 0.37 0.39 0.39 0.39 0.39 0.97 1.00 

 
Scale 4 

 AL3MTH ALCASH CU3MTH CUCASH PB3MTH PBCASH NI3MTH NICASH ZN3MTH ZNCASH SN3MTH SNCASH
AL3MTH 1.00 0.72 0.64 0.61 0.43 0.36 0.50 0.50 0.55 0.51 0.32 0.31 
ALCASH 0.72 1.00 0.46 0.44 0.25 0.20 0.35 0.34 0.37 0.36 0.23 0.22 
CU3MTH 0.64 0.46 1.00 0.96 0.37 0.31 0.47 0.46 0.57 0.54 0.36 0.34 
CUCASH 0.61 0.44 0.96 1.00 0.36 0.31 0.44 0.44 0.55 0.52 0.36 0.34 
PB3MTH 0.43 0.25 0.37 0.36 1.00 0.94 0.47 0.47 0.55 0.53 0.35 0.33 
PBCASH 0.36 0.20 0.31 0.31 0.94 1.00 0.42 0.42 0.47 0.47 0.31 0.30 
NI3MTH 0.50 0.35 0.47 0.44 0.47 0.42 1.00 0.99 0.45 0.42 0.40 0.39 
NICASH 0.50 0.34 0.46 0.44 0.47 0.42 0.99 1.00 0.44 0.42 0.39 0.38 
ZN3MTH 0.55 0.37 0.57 0.55 0.55 0.47 0.45 0.44 1.00 0.95 0.41 0.37 
ZNCASH 0.51 0.36 0.54 0.52 0.53 0.47 0.42 0.42 0.95 1.00 0.37 0.33 
SN3MTH 0.32 0.23 0.36 0.36 0.35 0.31 0.40 0.39 0.41 0.37 1.00 0.98 
SNCASH 0.31 0.22 0.34 0.34 0.33 0.30 0.39 0.38 0.37 0.33 0.98 1.00 

 
Notes: AL3MTH= aluminum 3- month futures, ALCASH: aluminum cash, CU3MTH= copper 3- month 
futures, CUCASH: copper cash, PB3MTH= lead 3-month futures, PBCASH: lead cash, NI3MTH= nickel 3- 
month futures, NICASH: nickel cash, ZN3MTH= zinc 3- month futures, ZNCASH: zinc cash, SN3MTH= tin 
3- month futures, SNCASH: tin cash, Wavelet scales are such that scale 2: 4-8 days and scale 4: 16-32 days. . 
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Table 3  In-sample wavelet-based hedge ratios 
 

Minimum variance 
 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

Aluminum 0.725 0.743 0.725 0.629 0.688 0.741 
Copper 1.059 1.066 1.065 1.020 1.036 1.080 
Lead 1.141 1.156 1.148 1.122 1.146 1.028 

Nickel 0.977 0.944 1.027 1.033 1.016 0.900 
Zinc 1.086 1.126 1.055 1.003 0.949 1.182 
Tin 1.023 1.014 1.007 1.021 1.064 0.994 

OLS 
 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

Aluminum 0.682 0.627 0.728 0.775 0.733 0.851 
Copper 0.841 0.841 0.829 0.827 0.869 0.874 
Lead 0.799 0.783 0.813 0.816 0.792 0.824 

Nickel 0.935 0.925 0.931 0.945 0.961 0.979 
Zinc 0.881 0.878 0.895 0.881 0.859 0.890 
Tin 0.907 0.891 0.919 0.941 0.933 0.941 

Note: The minimum-variance hedge ratio is computed according to equation (3), whereas the OLS hedge ratio 
according to equation (3′). 
 

Table 4 In-sample degree of hedging effectiveness  
 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

Minimum-variance hedge ratio 0.965 0.960 0.969 0.971 0.975 0.986 
OLS hedge ratio 0.871 0.851 0.884 0.892 0.904 0.930 

Naïve accounting for cross correlations 0.952 0.947 0.956 0.953 0.960 0.972 
Naïve neglecting cross correlations 0.861 0.841 0.874 0.880 0.893 0.920 

Note: The degree of hedging effectiveness is calculated according to equations (6) through (7′). 
 

Table 5 In-sample utility comparisons of hedging effectiveness 
(a) Minimum variance A = 0.001 A = 0.5 A = 1 A = 4 A = 10 A = 100 A = 500 

Scale 1 –0.0246 –0.0260 –0.0275 –0.0362 –0.0536 –0.2904 –1.4522 
Scale 2 –0.0075 –0.0080 –0.0085 –0.0115 –0.0174 –0.0994 –0.4968 
Scale 3 –0.0120 –0.0122 –0.0123 –0.0132 –0.0149 –0.0290 –0.1449 
Scale 4 –0.0104 –0.0105 –0.0106 –0.0109 –0.0115 –0.0110 –0.0549 
Scale 5 –0.0100 –0.0100 –0.0100 –0.0101 –0.0102 –0.0019 –0.0095 
(b) OLS A = 0.001 A = 0.5 A = 1 A = 4 A = 10 A = 100 A = 500 
Scale 1 –0.0250 –0.0264 –0.0279 –0.0366 –0.0541 –0.3157 –1.4787 
Scale 2 –0.0075 –0.0080 –0.0085 –0.0115 –0.0175 –0.1073 –0.5065 
Scale 3 –0.0121 –0.0122 –0.0124 –0.0134 –0.0154 –0.0451 –0.1771 
Scale 4 –0.0099 –0.0100 –0.0100 –0.0104 –0.0110 –0.0209 –0.0648 
Scale 5 –0.0110 –0.0110 –0.0110 –0.0110 –0.0110 –0.0113 –0.0126 

(c) Naïve A = 0.001 A = 0.5 A = 1 A = 4 A = 10 A = 100 A = 500 
Scale 1 –0.0290 –0.0317 –0.0344 –0.0507 –0.0832 –0.5709 –2.7382 
Scale 2 –0.0085 –0.0096 –0.0107 –0.0174 –0.0308 –0.2319 –1.1257 
Scale 3 –0.0116 –0.0121 –0.0125 –0.0153 –0.0208 –0.1036 –0.4716 
Scale 4 –0.0113 –0.0115 –0.0117 –0.0128 –0.0149 –0.0470 –0.1896 
Scale 5 –0.0105 –0.0106 –0.0106 –0.0111 –0.0120 –0.0257 –0.0866 

Note: The utility function is given by )''(E fc rβrι − − )2(A5.0 βΩι'βΩβ'ιΩι' cffC −+ . The expected values 
of returns are replaced by the median of the wavelet coefficients at each corresponding timescale, whereas the 
variance-covariance matrices are computed at each timescale. 



Table 6 Simulations results for hedge ratios 
 

Accounting for cross correlations Neglecting cross correlations 
  Raw data      Raw data     

Statistic Aluminum Copper Lead Nickel Zinc Tin Aluminum Copper Lead Nickel Zinc Tin 
Minimum 0.29 0.90 0.71 0.63 0.75 0.71 0.48 0.97 0.77 0.65 0.95 0.76 

1st Q 0.59 1.04 1.10 0.98 1.08 0.97 0.64 1.06 1.07 0.98 1.04 0.97 
Median 0.64 1.08 1.13 1.01 1.13 1.01 0.66 1.07 1.09 0.99 1.06 0.99 
Mean 0.64 1.09 1.13 1.00 1.13 1.01 0.66 1.08 1.09 0.99 1.06 0.99 
3rd Q 0.69 1.13 1.17 1.03 1.18 1.04 0.69 1.09 1.11 1.01 1.08 1.01 

Maximum 0.89 2.09 1.30 1.11 1.38 1.19 0.79 1.83 1.16 1.05 1.25 1.10 
Kurtosis–3 1.03 27.40 4.49 5.55 1.13 1.05 1.32 65.64 18.09 21.45 6.16 4.28 
Skewness –0.43 3.68 –0.85 –1.52 –0.14 –0.22 –0.32 6.91 –2.41 –3.52 1.58 –0.86 

  Scale 2      Scale 2     
Statistic Aluminum Copper Lead Nickel Zinc Tin Aluminum Copper Lead Nickel Zinc Tin 

Minimum 0.24 0.85 0.69 0.62 0.71 0.68 0.50 0.97 0.76 0.66 0.95 0.74 
1st Q 0.57 1.02 1.09 0.97 1.06 0.94 0.63 1.05 1.07 0.98 1.04 0.96 

Median 0.64 1.10 1.14 1.00 1.13 1.00 0.66 1.07 1.09 0.99 1.06 0.99 
Mean 0.64 1.10 1.14 1.00 1.13 1.00 0.66 1.08 1.09 0.99 1.06 0.99 
3rd Q 0.71 1.15 1.19 1.04 1.20 1.06 0.70 1.09 1.11 1.01 1.08 1.01 

Maximum 0.90 2.10 1.34 1.15 1.42 1.30 0.78 1.84 1.17 1.05 1.27 1.11 
Kurtosis–3 0.26 15.39 1.67 3.31 0.32 0.34 –0.04 61.14 12.41 18.69 5.73 3.26 
Skewness –0.31 2.34 –0.33 –0.99 –0.20 –0.04 –0.14 6.50 –1.81 –3.20 1.52 –0.67 

  Scale 4      Scale 4     
Statistic Aluminum Copper Lead Nickel Zinc Tin Aluminum Copper Lead Nickel Zinc Tin 

Minimum 0.06 0.59 0.66 0.60 0.63 0.57 0.35 0.95 0.81 0.66 0.94 0.72 
1st Q 0.49 0.99 1.05 0.92 0.98 0.91 0.61 1.04 1.05 0.96 1.04 0.95 

Median 0.64 1.10 1.13 1.00 1.11 1.00 0.66 1.07 1.09 0.99 1.06 0.99 
Mean 0.64 1.10 1.14 0.99 1.11 1.00 0.66 1.08 1.08 0.99 1.07 0.99 
3rd Q 0.79 1.22 1.24 1.07 1.24 1.09 0.72 1.10 1.12 1.02 1.09 1.02 

Maximum 1.32 2.11 1.62 1.26 1.75 1.43 0.95 1.84 1.25 1.08 1.30 1.13 
Kurtosis–3 –0.08 1.42 0.07 –0.05 –0.13 0.12 0.40 36.36 1.44 7.65 2.05 1.49 
Skewness 0.17 0.32 0.03 –0.29 0.15 0.00 0.01 4.39 –0.42 –1.75 0.81 –0.39 



Table 7 Simulations of hedge effectiveness 
 

(a) Accounting for cross correlations 
 Minimum-variance Naïve 

Statistic Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
Minimum 0.955 0.953 0.950 0.944 0.931 0.896 0.902 0.903 0.902 0.924 0.918 0.889 

1st Q 0.963 0.963 0.963 0.961 0.958 0.953 0.947 0.946 0.945 0.944 0.944 0.939 
Median 0.967 0.967 0.966 0.968 0.969 0.968 0.949 0.949 0.950 0.948 0.951 0.949 
Mean 0.969 0.969 0.969 0.968 0.968 0.969 0.948 0.948 0.948 0.948 0.949 0.948 
3rd Q 0.972 0.972 0.974 0.973 0.978 0.985 0.951 0.952 0.953 0.953 0.956 0.959 

Maximum 1.042 1.039 1.045 1.051 1.056 1.068 0.957 0.958 0.959 0.965 0.971 0.977 
Stdev 0.011 0.011 0.012 0.013 0.018 0.026 0.006 0.006 0.007 0.008 0.011 0.016 

Kurtosis–3 24.470 19.808 18.361 17.934 5.189 1.541 34.063 23.978 15.967 0.795 0.431 1.358 
Skewness 4.176 3.666 3.293 2.771 0.951 0.316 −4.667 −3.632 −2.923 −0.515 −0.834 −0.838

(b) Neglecting cross correlation 
 OLS Naïve 

Statistic Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
Minimum 0.835 0.834 0.830 0.834 0.829 0.783 0.761 0.757 0.764 0.764 0.762 0.732 

1st Q 0.861 0.860 0.860 0.859 0.854 0.850 0.847 0.848 0.844 0.843 0.837 0.833 
Median 0.866 0.865 0.867 0.866 0.868 0.865 0.852 0.851 0.853 0.851 0.857 0.847 
Mean 0.865 0.865 0.865 0.866 0.866 0.866 0.850 0.850 0.850 0.851 0.851 0.847 
3rd Q 0.869 0.870 0.871 0.874 0.878 0.883 0.857 0.856 0.859 0.862 0.865 0.863 

Maximum 0.885 0.885 0.886 0.902 0.898 0.917 0.868 0.872 0.873 0.885 0.895 0.901 
Stdev 0.007 0.008 0.009 0.012 0.016 0.024 0.015 0.016 0.016 0.016 0.020 0.028 

Kurtosis–3 2.970 2.017 1.477 0.475 –0.699 0.416 19.934 19.516 12.976 7.357 2.622 2.633 
Skewness –0.531 –0.282 –0.747 –0.036 –0.290 –0.319 −3.948 −3.835 −3.062 −1.523 −1.036 −0.843

 
Table 8 Difference-in mean test between minimum-variance and naïve hedge effectiveness 

 
(a) Accounting for cross correlations 

 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
statistic 36.871 35.535 33.105 29.437 21.091 15.455 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 

(b) Without accounting for cross correlations 
 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

statistic 20.177 19.802 18.554 16.570 13.405 11.296 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 

 
Note: In Panels (a) and (b), the test is conducted by taking the difference of the hedge effectiveness of the 
minimum-variance hedge approach and that of the naïve one. 
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Table 9 Specification tests of multivariate-GARCH models 
 

(a) Petroleum and energy (weekly returns) 
Commodity index Shapiro-Wilk normality test Pr ARCH-effects Lagrange multiplier test Pr 

Energy futures index 0.989 0.771 6.199 0.906 
Energy spot index 0.764 0.000 4.133 0.981 
Petroleum futures index 0.919 0.000 23.139 0.027 
Petroleum spot index 0.902 0.000 3.824 0.986 

(b) Aluminum (daily returns) 
Commodity index Shapiro-Wilk normality test Pr ARCH-effects Lagrange multiplier test Pr 

Aluminum futures index 0.969 0.000 9.469 0.662 
Aluminum spot index 0.971 0.000 26.058 0.011 

 
Note: (1) AR(1)-DVEC(1,1) models are fitted to the data. (2) ‘Pr’ stands for probability value.  

 
Table 10 Simulation results of hedge effectiveness: Multivariate-GARCH model versus copulas 

 
(a) Petroleum and energy (weekly returns) (b) Aluminum (daily returns) 

 copula MGARCH   copula MGARCH   
  mean HE mean HE mean test Pr mean HE mean HE mean test Pr 

Raw data 0.947 0.946 7.577 0.000 0.410 0.349 11.035 0.000 
Scale 1 0.948 0.946 8.206 0.000 0.410 0.355 9.846 0.000 
Scale 2 0.948 0.946 8.519 0.000 0.412 0.370 7.838 0.000 
Scale 3 0.947 0.946 1.262 0.104 0.411 0.400 2.346 0.009 
Scale 4 0.945 0.946 −2.175 0.015 0.411 0.429 −3.679 0.000 
Scale 5 0.945 0.948 −3.375 0.000 0.413 0.460 −7.690 0.000 

 
Notes: (a) Simulations of multivariate-GARCH data (MGARCH) are based on the models reported in 
Table 9. (b) For the MGARCH and copula cases, the mean hedge effectiveness (HE) is computed on the 
basis of 500 hundred iterations, according to equation (6). 
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