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Abstract. In this paper we study a large class of resource allocation problems with an important

complication, the utilization cost of a given resource is private information of a profit maximizing

agent. After reviewing the characterization of the optimal bayesian mechanism, we study the

informational cost introduced by the presence of private information. Our main result is to provide

an upper bound for the ratio between the cost under asymmetric information and the cost of a fully

informed designer, which is independent of the combinatorial nature of the problem and tight. We

also show that this bound holds for a variation of the Vickrey-Clark-Groves mechanism. Finally we

point out implementation issues of the optimal mechanism.

1. Introduction

A wide class of problems of the form min{ctx|x ∈ Γ} have been analyzed in the literature and

their application to real world problems are innumerable. In this paper we consider such a class of

problems with an important and realistic complication, the utilization cost of a given resource xi

is private information of a profit maximizing agent .

For example, let us consider a natural situation in supply chain management. A large company

needs to procure quantities Di of a given good for its various locations t1, . . . , tk. The good is

produced at various locations s1 . . . , sl, each of them with a maximum production capacity Qj .

The delivery of the goods is done through a transportation network in which each link has a cost

that is publicly known. This problem, when the production facilities are owned by the company,

reduces to a standard minimum cost flow through a network. If, however, the production facilities

are owned by private contractors, whose production cost is private information, there is an added

layer of difficulty to the problem. Now the company must design a mechanism to minimize expected

procurement cost, subject to the feasibility constraints on the network, and inducing contractors

to reveal their costs in exchange of a profit.
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In this paper, we quickly review the characterization of the optimal bayesian (i.e., utilization

costs are random variables) mechanism for the whole class of problems with a linear cost function

and a fixed constraint set. Then, we analyze two basic problems.

First, we study the informational cost introduced by the presence of private information. Such

a consideration is important, because it lies at the heart of an old economic question: To make

or to buy? If this cost is small, the organizational cost of acquiring small producers may be high

and not worth it. If big, such an acquisition may turn out to be profitable for the company trying

to procure goods or services. Our main result is to provide an upper bound for the ratio between

the cost under asymmetric information and the cost of a fully informed designer. Specifically, this

bound states that for a large class of distributions, which contains those that are symmetric and

unimodal, the expected cost of an optimal mechanism is at most twice the cost of an optimal

solution obtained by a fully informed planner. Neither this bound nor its tightness depend on the

combinatorial nature of the problem, but only on the statistical distribution of private information.

The latter bound holds for a variation of the Vickrey-Clark-Groves mechanism as well, and becomes

significantly better in some special situations.

On the other hand, we study the computational cost of calculating such a mechanism. We

show that such a problem is equivalent to performing parametric linear programming over the set

Γ, which is in general of exponential complexity, even if optimization over Γ is simple. For the

important class of problems where the set Γ is a 0-1 polytope, however, we give a simple algorithm

with the same complexity of the original optimization problem with complete information. For

the other problems, we point out that a simple sampling technique which takes advantage of the

owners’ risk neutrality, gives a random mechanism which yield the same total expected cost as the

deterministic one.

2. The Model

2.1. The Environment. We consider a setting in which scarce resources must be allocated in

order to minimize the cost of a given project. The cost of each resource may be public or private

information. The planner’s goal is to minimize the expected cost of the project. To this end, she

can design a mechanism where the owners with private information have incentives to reveal their

private information.

In our framework each resource a ∈ A is represented by a variable xa, and is associated with

a marginal cost of utilization ca. The set A is partitioned into two sets A1 and A2. Costs of

resources a ∈ A1 are private, and thus ca is private information and is distributed according to

Fa, whose bounded support is the interval [ca, ca] ⊂ R+. The distribution Fa is assumed to have a

density fa which is continuous and strictly positive in [ca, ca]. For simplicity we also assume that

Fa(ca)/fa(ca) is nondecreasing (satisfied among others by the family of logconcave distributions).

Costs of resources a ∈ A2 are public information and equal ca. Resources are scarce and subject to

an exogenous feasibility constraint x ∈ Γ ⊆ R
|A|, which we assume compact. Therefore, if all costs

ca, a ∈ A were known, the planner would solve min{cT x : x ∈ Γ}. However, costs of resources in
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A1 are unknown and thus the planner must design a mechanism to elicit this information in order

to minimize expected cost.

We now give a key property that holds in this environment. It states that if the cost of a

resource increases, the value of the corresponding variable, in a cost-minimizing solution, does not

increase. This intuitive and simple result turns out to be critical for characterizing the optimal

mechanism.

Lemma 1. Let x(c) = {xa(c)}a∈A be the minimum cost assignment in Γ for a cost vector c. Then

xa(·, c−a) is non-increasing for all a ∈ A.

Proof. Consider a cost vector c and let c′ be defined as c′e = ce for all e ∈ A − {a} and c′a = ca + ε

for some ε > 0. From the definition of x(c) we have that: cT x(c) ≤ cT x(c′) and c′T x(c′) ≤ c′T x(c).

Summing both terms we obtain (cT −c′T )[x(c)−x(c′)] ≤ 0 which is equivalent to xa(c) ≤ xa(c
′). ¤

As usual, if x ∈ R
n, x−i denotes the vector in which the i−th component is removed. We also

define:

f(c) =
∏

a∈A1

fa(c), f−a(c) =
∏

e∈A1−{a}

fa(c), C =
∏

a∈A1

[ca, ca], C−a =
∏

e∈A1−{a}

[ca, ca].

2.2. Mechanisms. In order to minimize its expected cost, the planner designs a mechanism. In

other words, the planner chooses a message space Ma for each a ∈ A1, together with assignment

and payment rules. Given messages from resource owners, these rules determine the amount of

each resource used by the planner and the payment received by each owner. Due to the revelation

principle it is enough to set Ma = [ca, ca] and consider truthful mechanisms.

Therefore, a mechanism is given by assignment rules {xa}a∈A, indicating how much of resource

a will be used, and a family of payment rules {ta}a∈A1
, indicating the total payment to the owner

of resource a ∈ A1. Naturally, these values depend on the cost revelations of each owner, therefore

xa : C −→ R and ta : C −→ R. Our framework allows the payment received by the owner of

resource a, given revelations c, to be random. If this is the case, ta denotes the total expected

payment to the owner of resource a ∈ A1.

The payoff of the owner of resource a, with cost ca, when reporting a cost c′a is given by:

(1) Ua(ca, c
′
a) =

∫

C−a

[ta(c
′
a, c−a) − caxa(c

′
a, c−a)]f−a(c−a)dc−a.

The payoff of a resource owner with cost ca is then:

(2) Va(ca) = max
c′a∈Ca

Ua(ca, c
′
a).

We must also consider mechanisms that give a positive utility to owners and satisfy the feasi-

bility constraints. We can thus give the following definition.

Definition 2. A mechanism (x, t) ≡ ({xa}a∈A, {ta}a∈A1
) is feasible if and only if for all cost

realizations c the following hold:
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(IC) Va(ca) = Ua(ca, ca) for all a ∈ A1,

(PC) Va(ca) ≥ 0 for all a ∈ A1,

(F) x(c) ∈ Γ

With this, we can write the problem of a cost-minimizing designer as

(3) min







∫

c∈C





∑

a∈A1

ta(c) +
∑

a∈A2

caxa(c)



 f(c)dc : (x, t) is feasible







.

2.3. The Optimal Bayesian Mechanism. Using by now standard arguments introduced by

Myerson [6] and extended among others by Elkind et. al. [2] (see [7, Chapter 13] for a detailed

treatment) we can characterize the optimal Bayesian mechanism relying on Lemma 1. For com-

pleteness we have included a proof in Appendix A. Indeed, the optimal mechanism can be written

as the solution to the following control problem

min
{xa(c)}a∈A

∫

c∈C





∑

a∈A1

xa(c)

[

ca +
Fa(ca)

fa(ca)

]

+
∑

a∈A2

xa(c)ca



 f(c)dc

s.t. x(c) ∈ Γ and νa(ca) non-increasing for all a ∈ A1.

Here, νa(ca) :=
∫

C−a
xa(ca, c−a)f−a(c−a)dc−a is the expected utilization of resource a for a ∈ A1.

Because of Lemma 1, and the assumption that Fa(ca)/fa(ca) is increasing, we can relax the

constraint asking for νa(ca) non-increasing and solve the above problem pointwise to obtain a

feasible solution. Therefore, we can characterize the optimal mechanism.

Proposition 3. The optimal assignment rules x̄(c) = {x̄a(c)}a∈A are those solving, for each cost

revelations {ca}a∈A1
, the following optimization problem:

min
y∈Γ

∑

a∈A1

(

ca +
Fa(ca)

fa(ca)

)

ya +
∑

a∈A2

caya,

and an optimal payment rule is given by

t̄a(c) = cax̄a(c) +

∫ c̄a

ca

x̄a(t, c−a)dt.

In other words, x(c) is the minimum cost assignment in Γ with virtual costs c′a = ca +Fa(ca)/fa(ca)

for all a ∈ A1, and c′a = ca for all a ∈ A2.

3. Loss due to Lack of Information

The presence of private information among resource owners increases the cost of performing a

given task. A natural problem, with relevant practical implications, is to quantify the relationship

between the cost under complete and incomplete information. The former corresponds to a situa-

tion where the planner owns the different resources and the technology needed for their production,
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therefore knowing exactly the production costs. The latter corresponds to a decentralized situa-

tion, where the planner has outsourced the production of necessary inputs, and therefore does not

know precisely their production costs. Since outsourcing can imply important savings in terms of

managerial effort, it is critical to know how much is a firm losing by spinning off some of its com-

ponents, or how much is a central planner losing by privatizing some key components of a planned

economy. Moreover, with incomplete information, a cost-minimizing planner does not necessarily

assigns resources efficiently (since he considers modified costs), so we consider the question of the

expected cost of an efficient mechanism, and its comparison to the cost-minimizing and the full

information ones.

Interestingly, both comparisons can be done independently of the combinatorial structure of

the problem (given by the set Γ), and depend on the nature of the incomplete information (given

by the distribution functions Fa). The critical lemma is the following:

Lemma 4. If the distribution F with density f satisfies that E(X|X ≤ y) ≥ y/α, where X is

drawn according to F , then for [a, b] ⊂ R+ and g(·) a non-increasing real-valued function:
∫ b

a
g(c)F (c)dc ≤ (α − 1)

∫ b

a
g(c)cf(c)dc.

Proof. Let g(·) be any non-increasing real-valued function and F be a distribution, with density f ,

satisfying the condition in the proposition. Then, since g′(c) ≤ 0,
∫ b

a
g(c)(F (c) − (α − 1)cf(c))dc = g(b)

∫ b

a
(F (s) − (α − 1)sf(s))ds

−

∫ b

a
g′(c)

∫ c

a
(F (s) − (α − 1)sf(s))dsdc,

is nonpositive if
∫ y
a F (c)dc ≤ (α − 1)

∫ y
a cf(c)dc holds for all y ∈ [a, b]. This latter condition is

equivalent to E(X|X ≤ y) ≥ y/α, since integrating by parts
∫ y

a
F (c)dc − (α − 1)

∫ y

a
cf(c)dc = yF (y) − α

∫ y

a
cf(c)dc,

which is nonpositive so long as E(X|X ≤ y) ≥ y/α. ¤

3.1. Cost Loss Due to Lack of Information. We now turn compare the planner’s expected cost

when using the optimal mechanism to that in case she had complete information. From Proposition

13, the former is given by:

(4) CI = min
x(c)∈Γ

∫

c∈C





∑

a∈A1

xa(c)

[

ca +
Fa(ca)

fa(ca)

]

+
∑

a∈A2

xa(c)ca



 f(c)dc.

On the other hand, when complete information is available to the planner, her cost is:

(5) CC = min
x(c)∈Γ

∑

a∈A1

∫

c∈C
caxa(c)f(c)dc +

∑

a∈A2

ca

∫

c∈C
xa(c)f(c)dc.
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Observe that if A1 = A, that is all costs are private information, and Fa is uniform in [0, s]

for all a ∈ A, the planner’s problem given by (4) is exactly the same as that in (5) with the costs

doubled. Therefore the planner’s expected cost in the optimal mechanism is twice as much as that

in the complete information setting. In what follows we extend this result a very general class of

distribution functions.

Proposition 5. If for all a ∈ A1 the distribution Fa satisfies that E(X|X ≤ y) ≥ y/α, where X is

drawn according to Fa, then CI ≤ α · CC .

Proof. We apply lemma 4 to the planner’s problem (5):

CI ≤ min
x(c)∈Γ, νa(ca)↓

∫

c∈C





∑

a∈A1

xa(c)α · ca +
∑

a∈A2

xa(c)ca



 f(c)dc

≤ α · min
x(c)∈Γ, νa(ca)↓

∫

c∈C





∑

a∈A1

xa(c)ca +
∑

a∈A2

xa(c)ca



 f(c)dc

≤ α · CC ,

where the last inequality comes from relaxing the monotonicity constraint on νa and pointing out

that the pointwise solution to the relaxed problem satisfies it automatically due to the monotonicity

given by Lemma 1. ¤

Observation: The previous bound is related only to the distribution of private information

about costs, and not to the particular problem Γ being considered. As we already pointed out,

in any instance of a combinatorial problem defined by Γ, when all resources are private and the

information is distributed uniformly on [0, a], this bound is tight.

Therefore we can apply such a result to any linear assignment problem and, as we discussed,

this bound is tight when the distributions are uniform in [0, s].

It is straightforward to observe that the the previous proposition can be applied to densities

which are non-decreasing. Furthermore, as we show next, it can also be applied to an important class

of distributions, namely, those that are symmetric and unimodal (SUD). A distribution function is

unimodal if it has a unique local maximum.

Proposition 6. If Fa is SUD for all a ∈ A1, then CI ≤ 2·CC . Moreover, if Fa is SUD on [r, s] ⊂ R+

for all a ∈ A1, then

CI ≤
2s

r + s
· CC .

Proof. Let F be SUD on [r, s] and X drawn according to F . Observe that, from Proposition 5, it is

enough to show that E(X|X ≤ y) ≥ y/α, with α = 2s/(r + s). Observe that the latter condition

is equivalent to

h(y) =

∫ y

r
(x −

y

α
)f(x)dx ≥ 0 for all y ∈ [r, s].
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This inequality clearly holds for y = r. Also, since E(X) = (s + r)/2, we have that
∫ s
r xf(x)dx =

(s + r)/2 =
∫ s
r

s
αf(x)dx, so the inequality also holds for y = s.

To prove that the inequality holds in general we can evaluate

h′(y) =

(

s − r

2s

)

yf(y) −

(

s + r

2s

) ∫ y

r
f(x)dx.

Note that h′(r) ≥ 0, and that for y = r + ε, with ε smaller than (s − r)/2, we have that

2s · h′(y) = (s − r)(r + ε)f(r + ε) − (s + r)

∫ r+ε

r
f(x)dx

≥ (s − r)(r + ε)f(r + ε) − (s + r)εf(r + ε)

= f(r + ε)r(s − r − 2ε) ≥ 0.

Furthermore, there exists an ε ≤ (s− r)/2 for which the first inequality is strict. We can conclude

that h′(y) ≥ 0 for all y ∈ [r, (r+s)/2]. We finish the proof by showing that h′(y) is nonincreasing for

y ∈ [(r+s)/2, s], so that the sign of h′ changes at most once in the interval [r, s]. Indeed, observe that

h′′(y) = yf ′(y)(s−r)/2s−f(y)r/s, and since F is SUD, f ′ is nonpositive for s ≥ y ≥ (r+s)/2. ¤

The intuition behind the second part of this proposition is natural. For instance, if r is very

close to s, the cost under incomplete information approaches that of a fully informed planner. Also,

if s = r + K, for constant K, the bound also goes to one as r goes to infinity. This is because

the amount of information the planner ignores is irrelevant when compared to the total cost of the

project.

We finish this section by showing that one cannot expect to obtain a general bound for any

class of distributions. Furthermore, even for decreasing distributions, the bound becomes arbitrarily

bad. Indeed, consider the case where the planner must send one unit of flow from an origin to a

destination, in a two link network. One of the links is private information with cost distribution

proportional to f(c) = 1/(c + ε) in [0, 1], while the other is public and its cost equals 1 (so

Γ = {(x, y) ≥ 0 : x + y = 1} ). A simple calculation shows that

CI >
1

2
and CC =

1

ln(1 + 1/ε)
− ε.

Thus, the ratio can be made arbitrarily large for small enough ε.

3.2. Cost loss due to efficiency. The standard VCG mechanism solves, for every cost realization

c, the problem min{ctx|x ∈ Γ} and assigns according to the solution rule xV
a (c): It pays agent

a ∈ A1, ta(c) = caxa(c) + (
∑

b∈A

cbx
−a
b (c) −

∑

b∈A

cbxb(c)), where x−a(c) is a solution of min{ctx|x ∈

Γ, xa = 0}. It is well known that such a mechanism is incentive compatible, but can involve

infinite costs. However, if the support of the cost distribution is known, payments can be bounded

without losing incentive compatibility. We denote such a mechanism, with payments given by

ta(c) = min{caxa(c) + (
∑

b∈A

cbx
−a
b (c) −

∑

b∈A

cbxb(c)), c̄axa(c)}, the Truncated Vickrey-Clark-Groves

(TVCG) mechanism.
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The TVCG mechanism assigns efficiently, but has a potentially higher cost than CI . However,

the extra cost that TVCG incurs is bounded under suitable conditions on the distribution functions

Fa, as we show in the next proposition.

Proposition 7. If for all a ∈ A1 the distribution Fa satisfies that E(X|X ≤ y) ≥ y/α, where X is

drawn according to Fa, then CV CG ≤ α · CC ≤ α · CI .

Proof. Since in the TVCG mechanism a resource owner with cost c̄a obtains a net rent of 0, we can

write the total expected cost as

CV CG =

∫





∑

a∈A1

xV
a (c)

[

ca +
Fa(ca)

fa(ca)

]

+
∑

a∈A1

xV
a (c)ca



 f(c)dc,

where xV (c) corresponds to the efficient assignment given cost c, that is the solution to min{ctx|x ∈

Γ} Therefore, using lemma 4, we can write

CV CG =

∫





∑

a∈A1

xV
a (c)

[

ca +
Fa(ca)

fa(ca)

]

+
∑

a∈A2

xV
a (c)ca



 f(c)dc

≤ α

∫

∑

a∈A

xV
a (c)caf(c)dc

= αCC ≤ αCI

¤

Analogously to the previous section, we can use this result to find a tight bound when distri-

butions are SUD.

Proposition 8. If Fa is SUD for all a ∈ A1, then CV CG ≤ 2 · CC . Moreover, if Fa is SUD on

[r, s] ⊂ R+ for all a ∈ A1, then

CV CG ≤
2s

r + s
· CC .

Proof. Analogous to the proof of proposition 6. ¤

With propositions 6 and 8 we have that, for SUD distributions in [r, s] the following inequalities

hold:

CC ≤ CI ≤ CV CG ≤
2s

r + s
CC .

A natural question is whether there is a better bound for the comparison between CI and CV CG

than just CV CG ≤ 2s
r+s · CI . The answer is no, as sometimes the incomplete information planner has

the same cost the fully informed planner, while the TVCG mechanism performs badly at a cost
2s

r+s · CC . Consider for example the case where the planner must send one unit of flow between two

nodes, in a two link network. One of the links is public while the other is private, i.e., A1 = {a1},

A2 = {a2}, and Γ = {(xa1
, xa2

) ≥ 0 : xa1
+ xa2

= 1}. Consider {F
(n)
a1

} the family of SUDs for

resource a1, and assume that its support is the full interval [0, 1] and that F
(n)
a1

−→ δ1/2, where δ1/2
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is the mass distribution putting probability 1 to ca1
= 1/2. Assume also that ca2

= 1. Then, we

have that C
(n)
V CG = 1, but C

(n)
I −→ CC ≡ 1

2 . Therefore our bound is tight.

4. Computation and Implementation

In general, implementing TVCG is no harder than solving |A1| times the original problem

min{cT x : x ∈ Γ}, with the additional constraint that xa = 0. In some situations this latter problem

can be solved even more efficiently [3]. The situation is different for optimal mechanisms. In fact,

to implement an optimal mechanism the planner must compute the assignment and the payments

only for a specific cost realization. Note that this is simpler than computing the whole assignment

and payment rules, which require the assignment and payments for every cost realization.

Given a cost realization c, Proposition 13, states that the assignment can be computed as

min{c′T x : x ∈ Γ} for some virtual nonnegative cost vector c′. This problem is the same as

solving one instance of the complete information problem. However, to compute the payments

t̄a(c) = cax̄a(c) +
∫ c̄a

ca
x̄a(t, c−a)dt for a specific cost realization, in principle one needs to compute

x̄a(t, c−a) for all t ∈ [ca, c̄a]. That is we need to solve |A1| parametric optimization problems of the

form:

(6) gi(θ) =

(

arg min
x∈Γ

(c + θei)
T x

)

i

,

where (·)i denotes the i−th component. The computational complexity of such a problem heavily

depends on the structure of Γ and determines the complexity of computing the optimal mechanism

under incomplete information. In what follows we analyze three cases.

4.1. Case I: Parametric optimization is easy. If the parametric optimization problem (6) can

be solved in polynomial time, then the whole mechanism can be computed in polynomial time as

well. This includes the case in which Γ is the set of all paths from a given source to a given sink,

proved to be computationally easy in [2, 3].

Observe that a wider class of problem where parametric optimization turns out to be efficient

is when Γ = P ⊆ [0, 1]|A|, with P being an integral polytope. Of course a special case of this is

Γ = {x : Ax = 11, x ≥ 0}, with A totally unimodular. Shortest s − t path is included in this class

since it can be formulated imposing that the total flow across every s − t cut equals one. Other

problems in this class include minimum spanning tree and minimum perfect matching.

Proposition 9. If Γ = P ⊆ [0, 1]|A|, with P an integral polytope, then (6) can be computed in

polynomial time, by solving exactly two linear programming problems over P .

Proof. From Lemma1 gi(·) is non-increasing. Also, since Γ is a {0, 1} polytope we conclude that

gi(θ) is either 0 or 1, for all θ ≥ 0. Therefore, to fully determine gi(θ) (and thus obtain the optimal

mechanism), it suffices to compute θ∗ = max{θ : gi(θ) = 1}.
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To this end we first compute

Z = min{(c + θei)
T x : x ∈ Γ, xi = 0} = min{cT

−ix−i : (0, x−i) ∈ Γ}.

Analogously we compute

θ + Z ′ = min{(c + θei)
T x : x ∈ Γ, xi = 1} = θ + min{cT

−ix−i : (1, x−i) ∈ Γ}.

Obtaining that θ∗ = Z ′ − Z. ¤

Remark that the previous proposition can easily be extended to the case in which Γ is an

integral polytope in [0, K]|A| for fixed K, or even for K of polynomial size in the input. in this case

we would need to solve K linear programming problems over Γ. Furthermore, even for general Γ

but satisfying that the optimal solutions to minx∈Γ cT x lie in {0, . . . , K}|A|, the optimal mechanism

can be obtained by solving (K + 1)|A1| such problems.

4.2. Case II: Optimization is easy but parametric optimization is hard. Even if optimizing

over Γ is easy, the parametric optimization counterpart does not need to be so. For instance,

for parametric linear programming, i.e., Γ = {Ax = b, x ≥ 0}, the function gi(θ) can attain

exponentially (in |A| ) many different values [5]. Additionally, even for more structured problems

such as minimum cost flow, gi(θ) can have a superpolynomial number of values [1].

However, since resource owners are risk-neutral, we can easily obtain a randomized mechanism

that is truthful and gives in expectation the same value, therefore it is also optimal.

Indeed, for a given a cost realization c, the assignment x̄(c) is computed exactly as before (i.e.,

by solving min{c′T x : x ∈ Γ}), but the payments are computed using randomization. The payments

to the owner of resource a, is given by t̄a(c) = cax̄a(c) + (c̄a − ca)x̄a(Y, c−a), where Y is a random

variable uniformly distributed in [ca, c̄a]. In expectation, which is all that matters to a risk-neutral

resource owner, the latter payment equals

cax̄a(c) + (c̄a − ca)

∫ c̄a

ca

x̄a(t, c−a) ·
1

c̄a − ca
dt = cax̄a(c) +

∫ c̄a

ca

x̄a(t, c−a)dt,

and thus the mechanism is truthful and optimal. We conclude the following result.

Lemma 10. An optimal and truthful mechanism can be implemented by solving, for each a ∈ A1,

two problems of the form min{cT x : x ∈ Γ}.

Naturally the mechanism just described can be implemented in polynomial time so long as

the optimization problem over Γ can be solved in polynomial time. This enables us to implement

a desirable mechanism even if the parametric optimization 6 is hard. However, this mechanism

introduces high risk for the resource owners. To avoid this issue we could simply take a larger

number N of uniform samples Yi and compute t̄a(c) = cax̄a(c) + (c̄a − ca)
∑N

i=1 x̄a(Yi, c−a)/N .

With this the dispersion of payments will be reduced, though the computational effort will increase

with N , leading to a tradeoff between risk and computational efficiency.
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4.3. Case III: Optimization is hard. We now study what happens when optimizing over Γ is

NP-hard, which is the case for a large number of combinatorial problems [8]. As one may expect,

computing an optimal mechanism in such a case is also hard, so we can turn to search for truthful

mechanism that are approximately optimal.

Suppose that we have an algorithm alg for solving minx∈Γ cT x, with an approximation guar-

antee of β. That is an algorithm returning a solution whose cost is at most β times the optimal

cost. Suppose furthermore that alg is monotone, that is the returned solution xalg
a (ca, c−a) is

decreasing in ca. Then the mechanism that for each cost realization c assigns according to xalg(c)

is truthful. Moreover the expected cost for the planner of this mechanism is at most β · CI .
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Appendix A. The Optimal Bayesian Mechanism

Recall that Va(ca) = maxc′
a
∈Ca

Ua(ca, c′a), and that Ua(ca, c′a) is linear in ca. Then Va(ca) is a maximum

of linear functions, and therefore convex and therefore differentiable almost everywhere. This allows a simple

characterization of incentive compatibility. For a ∈ A1 let the expected utilization of resource be,

νa(ca) :=

∫

C−a

xa(ca, c−a)f−a(c−a)dc−a.

Lemma 11. A mechanism satisfies (IC) if and only if:

(i) νa(ca) is non-increasing (i.e., weakly decreasing).

(ii) Va(ca) = Va(ca) +
∫ ca

ca

νa(s)ds

Proof. Note that a mechanism satisfies (IC) if and only if maxc′
a
∈Ca

Ua(ca, c′a) is attained at c′a = ca, which

in turn is equivalent to −νa(ca) ∈ ∂Va(ca), where ∂Va(ca) is the subgradient of Va at ca. With this, we

can easily check the two implications needed. First, note that since Va(ca) is convex, a selection from its

subgradient must be monotone, then −νa(ca) is nondecreasing. On the other hand, a result in [4] implies

that a generalization of the fundamental theorem of calculus holds for convex functions, therefore (ii) is

satisfied since −νa(ca) ∈ ∂Va(ca).

To prove the other implication observe that from (ii) and (i) we can conclude that

Va(c′a) − Va(ca) =

∫ ca

c′
a

νa(s)ds ≥ (ca − c′a) · νa(ca) = (c′a − ca) · (−νa(ca)).

Therefore −νa(ca) ∈ ∂Va(ca) and the mechanism is incentive compatible. ¤

The previous lemma establishes that the assignment rules determine the owners’ payoffs up to a con-

stant. Therefore they determine the payment rules up to a constant. Moreover, it allows for a simple

characterization of the participation constraint (PC) whenever a mechanism is (IC).

Corollary 12. A mechanism that satisfies (IC), also satisfies (PC), if and only if Va(ca) ≥ 0.

We now rewrite the objective function of the planner.

∫

c∈C

(

∑

a∈A1

ta(c) +
∑

a∈A2

caxa(c)

)

f(c)dc =
∑

a∈A1

∫

c∈C

ta(c)f(c)dc +

∫

c∈C

∑

a∈A2

caxa(c)f(c)dc

From the definition of Va(·) and Lemma 11, the first term can be evaluated as

∑

a∈A1

∫ ca

c
a

Va(ca)fa(ca)dca +

∫ ca

c
a

∫ ca

ca

νa(y)dyfa(ca)dca +
∑

a∈A1

∫

C

caxa(c)f(c)dc

=
∑

a∈A1

Va(ca) +

∫ ca

c
a

νa(y)

∫ y

c
a

fa(ca)dcady +
∑

a∈A1

∫

C

caxa(c)f(c)dc

=
∑

a∈A1

Va(ca) +

∫ ca

c
a

∫

C−a

xa(y, c−a)f−a(c−a)dc−aFa(y)dy +
∑

a∈A1

∫

C

caxa(c)f(c)dc

=
∑

a∈A1

Va(ca) +

∫

c∈C

∑

a∈A1

xa(c)[ca +
Fa(ca)

fa(ca)
]f(c)dc.
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We conclude that the planners’ objective function can be written as a function of the assignment rules

only plus a term which, as we will see later, vanishes in an optimal mechanism.

(7)

∫

c∈C

(

∑

a∈A1

xa(c)

[

ca +
Fa(ca)

fa(ca)

]

+
∑

a∈A2

xa(c)ca

)

f(c)dc +
∑

a∈A1

Va(ca).

From Lemma 11, Corollary 12, and from the objective function (7), we are ready to write the planners’

problem as a function of the assignment rules and characterize the optimal mechanism.

Proposition 13. The optimal assignment rules x̄(c) = {x̄a(c)}a∈A are those solving, for each cost revelations

{ca}a∈A1
, the following optimization problem:

min
y∈Γ

∑

a∈A1

(

ca +
Fa(ca)

fa(ca)

)

ya +
∑

a∈A2

caya,

and an optimal payment rule is given by t̄a(c) = cax̄a(c) +
∫ c̄a

ca

x̄a(t, c−a)dt. In other words, x(c) is the

minimum cost assignment in Γ with virtual costs c′a = ca + Fa(ca)/fa(ca) for all a ∈ A1, and c′a = ca for all

a ∈ A2.

Proof. First note that an optimal mechanism satisfies Va(ca) = 0. Then, the last term in the planner’s

objective (7) vanishes. Let us now show that if x(c) ∈ Γ and νa(ca) is non-increasing, then it satisfies (IC)

and (PC), so long as the payments are ta(c) = caxa(c) +
∫ ca

ca

xa(s, c−a)ds. Indeed, observe that Va(ca) =
∫

C−a

ta(ca, c−a)f−a(c−a)dc−a −
∫

C−a

caxa(ca, c−a)f−a(c−a)dc−a. Replacing the value of the payments we

obtain

Va(ca) =

∫

C−a

∫ ca

ca

xa(t, c−a)dtf−a(c−a)dc−a =

∫ ca

ca

νa(t)dt,

implying that x(c) satisfies (IC) and (PC) with Va(ca) = 0. Then the assignment rule x(c) is a solution to

the optimal control problem

min
{xa(c)}a∈A

∫

c∈C

(

∑

a∈A1

xa(c)

[

ca +
Fa(ca)

fa(ca)

]

+
∑

a∈A2

xa(c)ca

)

f(c)dc

s.t. x(c) ∈ Γ and νa(ca) non-increasing for all a ∈ A1.

Notice that x̄(c), as defined in the statement of the proposition, solves previous problem pointwise if

we relax the constraint asking for νa(ca) being non-increasing. Furthermore, since ca + Fa(ca)/fa(ca) is

nondecreasing, Lemma 1 implies that v̄a(·, c−a) is non-increasing. With this, νa(ca) =
∫

C−a

x̄a(ca, c−a)dc−a,

is non-increasing as well. ¤
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