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Abstract

In this paper, we present a model of implementation where infeasible allocations

are converted into feasible ones through a process of renegotiation that is represented

by a reversion function. We describe the maximal set of Social Choice Correspon-

dences that can be implemented in Nash Equilibrium in a class of reversion functions

that punish agents for infeasibilities. This is used to study the implementation of the

Walrasian Correspondence and several axiomatic solutions to problems of bargaining

and taxation.
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1 Introduction

Since Hurwicz’s classic papers in the early 1970s, a great deal of attention has been devoted

to the problem of implementing social choice rules when preferences are state dependent (see

Jackson [12] for a survey). In contrast, very few contributions have dealt with the problem

of implementing social choice rules when the set of feasible outcomes is state dependent.

The problem is that, in this case, some messages yield infeasible allocations, which requires

that we describe how to deal with them. The standard approach is to design a series of

mechanisms in which the planner can ex-post verify whether or not players are exaggerating

individual endowments or technological capabilities (i.e. by asking them to put endowments

on the table).1 If an infeasibility occurs, players expect serious punishment (Hurwicz et al.,

[11], Tian [24], Tian and Li [25], Hong [8, 9, 10], Serrano and Vohra [22] and Dagan et al.[5]).2

In this paper, we present a theory of how to deal with infeasibilities that is based on

the idea that infeasible allocations are renegotiated. Consider the following example: The

associate editor of a journal is in charge of a special issue for which she has selected 10

authors. She asks each author to submit a 20-page paper. One of the authors submits a

22-page paper and another author submits an 18-page one. In this case, it is likely that

the editor will take no action. However, if both authors submit 22-page papers, she will

have to deal with the infeasibility. It is likely that she will work with the authors to shorten

the papers or with the managing editor in order to free up more pages, etc. In this case,

feasibility is restored by means of negotiation. Another example is the legal system: once

infeasibilities are detected, there are institutions designed to punish transgressors (if they
1This assumption is called the “no exaggeration assumption.” It implies that agents play a different game

at different states of the world, see Hong [10] p. 206, ll. 17-19.
2The work on manipulation via endowments (Postlewaite [18], Atlamaz and Klaus [2]) is also related to

this literature.
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can be identified) and to restore feasibility.3 In this case, feasibility is restored automatically.

Thus, the process used to deal with infeasibilities may reflect how agents renegotiate or how

institutions operate. Furthermore, it is independent on the mechanism that created the

infeasibility.

We model the social process that transforms infeasible allocations into feasible ones by

means of a reversion function. This concept originates in Maskin and Moore [15] and has been

developed by Jackson and Palfrey [13]. In these papers, the reversion function formalized

the process of renegotiation through which agents trade goods allocated by the mechanism

or veto some feasible allocations. In our case, the reversion function represents the way in

which society reacts to infeasible allocations. Consequently, the properties that we impose

on the reversion function are very different from those assumed by the earlier literature.

For the purposes of this paper, we assume complete information. This is a clean scenario

which looks to be a good candidate for a first trial of our approach. We focus on Nash im-

plementation and assume that agents know the reversion function. Therefore, the reversion

function induces new preferences, which we will call reverted preferences (this is the “trans-

lation principle” in Maskin and Moore [15]). Reverted preferences are state dependent even

if underlying preferences are not. Hence, when the feasible set is state dependent, imple-

mentation reduces to the case of implementation when only preferences are state dependent.

However, as Maskin and Moore put it, “results from the standard literature are too abstract

to give a clear indication of how serious a constraint renegotiation is. . . .”

We focus on a class of reversion function in which at least one agent is worse off if an

infeasibility arises. For those authors, renegotiation comes from the mechanism’s inability

to stop agents from reaching mutually beneficial trades. In our case, renegotiation arises
3We can think of the feasible set including not only the properly feasible allocations, but also all punish-

ments and additional devices that can be administered by the institutions designed, as well as the delays

that may occur.
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from the physical impossibility of carrying out the intended plans so that someone has to

make a sacrifice in order to achieve feasibility. An extreme case of a non-rewarding reversion

function is when all agents are punished when an infeasibility arises, so that they prefer any

allocation without punishment to the situation in which they are punished. This strong form

of punishment, which we will call generalized severe, resembles the one implicitly assumed

in the previous literature. In our case, it serves an instrumental role: it provides necessary

conditions for the implementation of social choice rules if the reversion function is non-

rewarding (Proposition 1). A simple adaptation of the classic result shows that monotonicity

is a necessary and almost sufficient condition for implementation in Nash equilibrium when

reverted preferences are given by the generalized severe reversion function (Remark 1). Thus,

our first task is to characterize monotonicity. We show that it is equivalent to a weak form

of individual rationality and a generalized form of contraction consistency (Proposition 2).

The former property is satisfied by most social choice rules and the latter is similar to Nash’s

independence of irrelevant alternatives.

Next, we apply the previous result to several frameworks and compare our findings with

the earlier literature. We begin by considering exchange economies. Here, the non-rewarding

condition may be violated unless renegotiation is sufficiently costly. In this case, the non-

rewarding condition can be considered as a simplification that narrows down the class of

renegotiation functions and thus is useful for obtaining analytical results. We prove that in

these environments, weak unanimity is trivially satisfied by any individually rational social

choice rule. But the individual rationality requirement, which is necessary and sufficient for

feasible implementation in the set-up considered by Hurwicz et al. [11], is not necessary

nor sufficient for implementation in our framework. This is due to the fact that in our case

a generalized form of contraction consistency must be satisfied as well. We show that the

Constrained Walrasian Rule satisfies generalized contraction consistency and is thus imple-

mentable if the reversion function is non-rewarding (Proposition 3). We turn our attention
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to bargaining problems. First, we notice that the non-rewarding condition always holds in

this environment. We show that the Nash Bargaining solution can be implemented if the

disagreement point is not state dependent (Proposition 4). This agrees with the findings of

Serrano [21] and Naeve [17]. We also show that the Kalai-Smorodinski solution is not imple-

mentable. Finally, we consider the taxation problem in which the mechanism must collect a

given amount of taxes. The non-rewarding condition also holds here. We describe the taxa-

tion rules that can be implemented and find that any taxation rule which continuously varies

on incomes whenever incomes are larger than proposed taxes cannot be implemented in our

framework. The difference between our approaches is that the no exaggeration assumption

in their case (see Footnote 1) rules out many profitable deviations that are possible in our

model.

In the sections that follow, we describe the model (Section 2), introduce reversion func-

tions (Section 3) and study implementation under the assumption that the reversion function

is non- rewarding (Sections 4 and 5) before presenting our conclusions (Section 6).

2 The Model

In this section we provide the main definitions. Let us first describe the environment.

Let I = {1, ..., n} be the set of agents. Let ωi denote agent i’s type and let Ωi denote agent

i’s type set. Let Ω ⊆
∏n

i=1 Ωi be the set of all possible states of the world. Each ω ∈ Ω is

characterized by a feasible set A(ω) and a preference profile R(ω) = (R1(ω), ..., Rn(ω)). The

feasible set A(ω) contains all feasible allocations including punishments that arise in state

ω. Set A ≡
⋃

ω∈ΩA(ω). Ri(ω) is a preference relation, a complete, reflexive and transitive

binary relation on A(ω). Pi(ω) denotes the corresponding strict preference relation. Let

Li(a, ω) = {x ∈ A(ω) : aRi(ω)x} be agent i’s lower contour set of a.

A correspondence F : Ω � A such that F (ω) ⊆ A(ω) for all ω ∈ Ω will be called a Social
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Choice Rule (SCR for brevity). A mechanism is a pair (M, g) where M ≡
∏n

i=1Mi is the

message space and g : M → A is the outcome function. Mi denotes agent i’s message

space. Let m = (m1, ..,mn) ∈ M be a list of messages, also written (mi,m−i). Given

ω ∈ Ω, a mechanism (M, g) induces a game (M, g,R(ω)). A message profile m∗ ∈ M is a

Nash equilibrium for (M, g,R(ω)) if, for all i ∈ I g(m∗)Ri(ω)g(mi,m
∗
−i) for all mi ∈ Mi.

NE(M, g,R(ω)) will denote the set of Nash equilibrium outcomes of (M, g,R(ω)). The

mechanism (M, g) implements F in Nash equilibrium if NE(M, g,R(ω)) = F (ω) for all ω ∈

Ω.

3 Reversion Functions

Since outcomes that are feasible in some states may be infeasible in others, we must describe

how society deals with infeasible allocations. We assume that if an allocation is infeasible, it is

transformed into a feasible one by a process that might involve delays (because renegotiation

takes time), penalties to some individuals, etc. The systematic way in which the reallocation

process takes place will be called a reversion function.4 This reallocation may correspond to

a “free-market renegotiation” or to a process where an institution applies some rule, i.e. a

rationing scheme, a bankruptcy rule, etc. Formally:

Definition 1 A reversion function is a map h : A × Ω → A such that, for each ω ∈ Ω: (i)

h(a, ω) ∈ A(ω) for all a ∈ A and (ii) h(a, ω) = a for all a ∈ A(ω).

A reversion function always yields feasible allocations (condition (i) above) and feasible

allocations are not renegotiated (condition (ii) above). The latter condition is postulated in

order to separate the issue of mutually advantageous renegotiation, which was the focus of

the previous literature, from the issue of infeasibility, which is the focus of this paper.5 In
4See Amorós [1] for a model with several reversion functions.
5A tautological interpretation is that A(ω) is the set of allocations that are not renegotiated at ω.
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other words, this condition allows us to analyze renegotiation caused by infeasibility alone.

Under weak conditions, if the reversion function can be chosen by the planner, any single

valued SCR can be implemented (a proof is available under request). But the designer, by

assumption, cannot condition her actions on the state of the world.

To explain the next step, consider the simplest possible case: at states of the world ω

and ω′ the preference profiles are the same, say R. Let a, b and c be three allocations that

are feasible at state ω. Assume that aPibPic for some agent i. Allocation a is not feasible

at state ω′ and is renegotiated to c, allocation b is feasible at ω′. So, even if the underlying

preferences are the same in both states, player i prefers a to b at state ω and b to a at ω′. In

order to formalize and extend this idea, we offer the following definition.

Definition 2 Given ω ∈ Ω and a reversion function h, the reversion of R(ω) on A(ω),

denoted by Rh(ω) is defined by:

aRh
i (ω)b⇐⇒ h(a, ω)Ri(ω)h(b, ω), for all a, b ∈ A, for all i ∈ I.

Then, when the reversion function is h, we can interpret that agents’ preferences are

the reverted preferences, i.e. they only care about reverted allocations. Let Lh
i (a, ω) =

{b ∈ A : h(a, ω)Ri(ω)h(b, ω)} be the lower contour set of a at ω with respect to Rh(ω).

The next definition is a straightforward adaptation of the standard notion of implemen-

tation in Nash equilibrium.

Definition 3 A social choice rule F is h-implementable in Nash Equilibrium if there exists

a game form (M, g) such that, for all ω ∈ Ω:

F (ω) = h(NE(M, g,Rh(ω)), ω)

In words, F is h-implementable in Nash equilibrium if and only if it is implementable in

Nash equilibrium when, for each ω ∈ Ω, the correspondent preference profile is Rh (ω). Once
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we consider that agents’ preferences are induced by the reversion function, we can deal with

h-implementation exactly in the same way as in the classical implementation problem.

When considering the restrictions that a state dependent feasible set imposes on implemen-

tation, we concentrate on monotonicity (or Maskin-monotonicity). As observed by Jackson

[12], monotonicity is the most important obstacle to implementation in Nash equilibrium.

For instance, it is not generally satisfied by the Walrasian social choice rule. Monotonicity

is a necessary and almost sufficient condition for a SCR to be implementable in Nash equi-

librium (see Maskin [14] or Repullo [19]). It is therefore the first condition to be addressed.

When a SCR satisfies monotonicity, if an alternative is implemented at one state of the world

and rises in every agent’s preference ranking at another state of the world, then it must be

implemented also at the second state. Now we restate the definition of monotonicity in terms

of reverted preferences. Let h be a reversion function.

Definition 4 A social choice rule F is h-monotonic if, for all ω, ω′ ∈ Ω and for every a ∈ A

such that h(a, ω) ∈ F (ω)

Lh
i (a, ω) ⊆ Lh

i (a, ω′) for all i =⇒ h(a, ω′) ∈ F (ω′)

Similarly, a social choice rule F that satisfies h-no veto power must select an allocation

which is at the top of the reverted preference ranking of all agents except at most one.

The importance of these concepts is highlighted by the following remark, whose proof is a

straightforward adaptation of a standard result mentioned before and is therefore omitted:

Remark 1 If a social choice rule is h-implementable in Nash equilibrium, it is h-monotonic.

Moreover, in environments in which #I > 2 if a social choice rule is h-monotonic and satisfies

h-no veto power, it is h-implementable in Nash equilibrium.

9



4 Non-Rewarding Reversion Functions: Basic Results

In this section, we focus our attention on a class of reversion functions where renegotiation

is not advantageous for all players. We will call this class of functions non-rewarding. We

will show that in this class, a particular reversion function, which we will call generalized

severe, implements the maximal set of SCR. Then, we will characterize the SCR that can be

implemented under generalized severe reversion functions. Let us start by defining the class

of non-rewarding reversion functions:

Definition 5 A reversion function is non-rewarding if, for all ω, ω′ ∈ Ω and all a ∈ A (ω):

(i) if a /∈ A (ω′) there exists i ∈ I such Lh
i (a, ω) * Lh

i (a, ω′).

(ii) If there exist i ∈ I and b ∈ A with aRi(ω)h(b, ω) and h(b, ω′)Pi(ω
′)h(a, ω′) then there

exist j and c ∈ A(ω′) such that aRj(ω)h(c, ω) with cPj(ω
′)h(a, ω′).

The idea behind non-rewarding reversion functions is that when agents renegotiate, some-

thing bad happens -delays, punishments engineered by the designer, etc.- The first condition

asserts that if an allocation a passes from being feasible at state ω to being infeasible at

state ω′, at least one player must pay a price for the infeasibility so that it does not improve

in everybody’s ranking. The second condition implies that at least one agent suffers as a

consequence of infeasibility in a way that could have been accomplished through a feasible

allocation (for instance, the agent who is deemed responsible for the infeasibility is punished).

Consider now a specific reversion function which belongs to the class of non-rewarding

ones. Suppose that, should an infeasibility arise, players are redirected to what they con-

sider to be the worst possible allocation. This reversion function resembles the (implicit)

assumption made in previous papers that agents do not choose infeasible messages because

the planner detects infeasibility and imposes a punishment in such a way that agents prefer

any other feasible allocation to this punishment. However, our interest in this particular
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reversion function arises from the fact that it allows us to find the maximal set of SCR that

can be implemented under non-rewarding renegotiation (see Proposition 1 below).

Let G ∈ A(ω) for all ω ∈ Ω be such that for all i, aPi(ω)G with a 6= G and a ∈ A(ω). G will

be called the generalized punishment point because all agents are penalized. The reversion

function with s(a, ω) = G if a /∈ A(ω) will be called generalized severe and the induced pref-

erences will be denoted by Rs(ω). They are characterized by the following three properties:

(1) If a, b ∈ A(ω) then aRs
i (ω)b if and only if aRi(ω)b for all i ∈ I.

(2) If a ∈ A(ω) with a 6= G and b /∈ A(ω) then aP s
i (ω)b for all i ∈ I.

(3) If a, b /∈ A(ω) then aIs
i (ω)b for all i ∈ I.

We assume that the planner never wants to implement alternative G. Formally, we consider

SCR F such that F (ω) 6= G for all ω ∈ Ω.

We show that generalized severe reversion implements the largest set of social choice rules

among the class of non-rewarding reversion functions where h-no veto power holds.

Proposition 1 Let F be an h-monotonic SCR. If h is non-rewarding, then F is monotonic

with a generalized severe reversion function. Thus, if F satisfies h-no veto power, it is

implementable in Nash Equilibrium with a generalized severe reversion function.

Proof. In the proof s denotes the generalized severe reversion function. Let a ∈ F (ω) and

assume that for some ω′, Ls
i (a, ω) ⊆ Ls

i (a, ω
′) for every i ∈ I. First, we show that a ∈ A (ω′) .

We prove the claim by contradiction: assume that a /∈ A (ω′). In this case, Ls
i (a, ω

′) =

{G} ∪ A\A (ω′), so Ls
i (a, ω) = (Li(a, ω) ∩ A (ω)) ∪ A\A (ω) ⊆ {G} ∪ A\A (ω′) . It follows

that A\A (ω) ⊆ A\A (ω′) so A (ω′) ⊆ A (ω). The reversion function h is non-rewarding

and a /∈ A (ω′), so Lh
i (a, ω) * Lh

i (a, ω′). Then, there exists b such that aRi(ω)h(b, ω) and

h(b, ω′)P (ω′)a. From the definition of a non-rewarding reversion function there exist j and

c ∈ A(ω′) such that aRj(ω)h(c, ω) and cPj(ω
′)h(a, ω′), but h(c, ω) = c, because A (ω′) ⊆

A (ω), which yields a contradiction because Ls
j(a, ω) ⊆ Ls

j(a, ω
′). Then it must be the case

11



that a ∈ A (ω′). In order to complete the proof it suffices to show that Lh
i (a, ω) ⊆ Lh

i (a, ω′)

for every i ∈ I. We prove the claim by contradiction: assume that there exist i ∈ I and

b ∈ A such that aRi(ω)h(b, ω) and h(b, ω)Pi(ω
′)a. From the definition of a non-rewarding

reversion function there exist j and c ∈ A(ω′) such that aRj(ω)h(c, ω) with cPj(ω
′)h(a, ω′). If

c ∈ A(ω) then h(c, ω) = c ∈ Ls
j(a, ω)\Ls

j(a, ω
′), a contradiction. If c /∈ A(ω) then s(c, ω) = G

and c ∈ Ls
j(a, ω)\Ls

j(a, ω
′), a contradiction. The last claim follows because h-no veto power

implies no veto power with a generalized severe reversion function.

The non-rewarding assumption is necessary for Proposition 1 to hold. Let Ω = {ω, ω′},

A(ω) = {a, b, c, G} and A(ω′) = {a, b,G}. Let n = 2 and Ri(ω) = Ri(ω
′) = R for i = 1, 2

where bPaPc. Let F (ω) = a and F (ω′) = b. Let h(c, ω′) = b. h does not satisfy the non-

rewarding assumption at c. F is h-implementable in NE by the simple mechanism where agent

1 chooses among a and c, but it cannot be implemented by severe generalized punishment

because F is not monotonic with respect to preferences Rs.

The rest of the section will be devoted to studying the implementability with non-

rewarding reversion functions. According to Remark 1, this leads us to study h-monotonicity

under preferences Rh(·).

We now introduce two properties that are necessary and sufficient for h-monotonicity

under generalized severe reversion.

Definition 6 A SCR F satisfies Weak Unanimity (WU) if, for all ω, ω′ ∈ Ω such that

A(ω′) ⊆ A(ω) and for all a ∈ A(ω)\A(ω′) such that Li(a, ω) ⊆ {G}∪ [A\A(ω′)] for all i ∈ I,

a /∈ F (ω).

Assume that all alternatives that are available at ω′ are available at ω, too. Let a be

available at ω but not at ω′. WU prescribes that if all alternatives that are available at ω′

are strictly better than a for all agents, the planner should not choose to implement a at

state ω. Breaking WU would create a problem of coordination at state ω′: if such an a was
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chosen at state ω, any Nash equilibrium yielding a at ω would be a Nash equilibrium at ω′

too, yielding h (a, ω′) = G.

Notice that WU is equivalent to the following condition: if A(ω′) ⊆ A(ω) and a ∈

F (ω)\A(ω′) then there exists b ∈ A(ω′), b 6= G such that aRi (ω) b for some i ∈ I. If WU

holds, such a b can be used to prevent the implementation of G at state ω′. When the feasible

set does not depend on the state of the world WU holds emptily.

Definition 7 A SCR F satisfies Generalized Contraction Consistency (GCC) if, for all

ω, ω′ ∈ Ω, and for all a ∈ F (ω) ∩ A(ω′) such that Li(a, ω) ∩ A(ω′) ⊆ Li(a, ω
′) and

A(ω′)\A(ω) ⊆ Li(a, ω
′) for all i ∈ I, a ∈ F (ω′).

When preferences are fixed and A(ω′) ⊆ A(ω), A(ω′)\A(ω) = ∅ ⊆ Li(a, ω) for all i. In

such a case, GCC prescribes choosing at state ω′ any feasible allocation we have chosen at ω.

Thus, GCC is a weak version of Nash Independence of Irrelevant Alternatives (see Roemer

[20, p.55]). When the feasible set does not depend on the state of the world GCC coincides

with Maskin Monotonicity. In the general case, GCC says that if a is selected at state ω, is

feasible at ω′, rises in everybody’s preference ranking with respect to the alternatives that

are feasible at ω′ only and no better alternatives are available in A(ω′)\A(ω), then a must

be selected also at ω′.

Proposition 2 A SCR is s-monotonic under generalized severe punishment if and only if it

satisfies Generalized Contraction Consistency and Weak Unanimity.

Proof. (Necessity) In the proof s denotes the generalized severe reversion function. We

first show the necessity of WU. Let A(ω′) ⊆ A(ω) and a ∈ F (ω)\A(ω′). The proof is by

contradiction. Assume that Li(a, ω) ⊆ {G} ∪ [A\A(ω′)] for all i. Observe that Ls
i (a, ω

′) =

{G} ∪ [A\A(ω′)] for all i. We can write Ls
i (a, ω) = [Li(a, ω) ∩ A (ω)] ∪ [A\A (ω)]. Since

A(ω′) ⊆ A(ω) then A\A (ω) ⊆ A\A (ω′). From the hypothesis of contradiction Li(a, ω) ∩
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A (ω) ⊆ {G} ∪ [A\A(ω′)]. It follows that Ls
i (a, ω) ⊆ {G} ∪ A\A (ω′) = Li (a, ω′) for all i.

As F satisfies s-monotonicity, s (a, ω′) = G ∈ F (ω′), which yields a contradiction. Now

consider GCC. Let a ∈ F (ω) ∩ A (ω′) and assume that Li(a, ω) ∩ A(ω′) ⊆ Li(a, ω
′) and

A(ω′)\A(ω) ⊆ Li(a, ω
′) for all i ∈ I. We next prove that Ls

i (a, ω) ⊆ Ls
i (a, ω

′) for all i. We

can write Ls
i (a, ω) = [Li(a, ω) ∩ A (ω′)]∪{[Li(a, ω) ∩ A (ω)] \A (ω′)}∪A\A (ω). Observe that

A \ A (ω) = [A (ω′) \ A (ω)] ∪ {[A \ A (ω′)] \ A (ω)}. It follows that Ls
i (a, ω) ⊆ Li(a, ω

′) ∩

A(ω′) ∪ [A\A (ω′)] = Ls
i (a, ω

′) for all i. By s-monotonicity s (a, ω′) = a ∈ F (ω′).

(Sufficiency) Let F satisfy WU and GCC. Let a ∈ F (ω). Assume that Ls
i (a, ω) ⊆ Ls

i (a, ω
′) for

all i. We first prove by contradiction that a ∈ A (ω′): assume a /∈ A (ω′). If A(ω′) ⊆ A(ω) , by

WU, there exist an agent i and b ∈ A (ω′) such that aRi (ω) b. Then aRs
i (ω) b, and bP s

i (ω′) a,

because a is not feasible at ω′, which yields a contradiction. Now let A(ω′) * A(ω). In this

case, let i be any agent and let b ∈ A (ω′) \A (ω). Then aP s
i (ω) b, and bP s

i (ω′) a, because a

is not feasible at ω′, which yields a contradiction.

So far we have established that a ∈ F (ω) ∩ A (ω′). We next prove by contradiction that

Li(a, ω) ∩ A(ω′) ⊆ Li(a, ω
′) and A(ω′)\A(ω) ⊆ Li(a, ω

′) for all i ∈ I. If this holds we can

conclude by GCC. Assume first that Li(a, ω) ∩ A(ω′) * Li(a, ω
′) for some agent i. Let b ∈

[Li(a, ω) ∩ A(ω′)] \Li(a, ω
′). We have aRs

i (ω) b and bP s
i (ω′) a, which yields a contradiction.

Now assume that, for some agent i, A(ω′)\A(ω) * Li(a, ω
′). Let b ∈ [A (ω′) \A(ω)] \Li(a, ω

′).

We have aP s
i (ω) b and bP s

i (ω′) a, which yields a contradiction.

5 Non-Rewarding Reversion Functions: Applications

In this section, we apply the findings of the previous sections to withholding in exchange

economies, bargaining and taxation methods.
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5.1 Exchange Economies: Withholding

Consider an exchangeeconomy with n agents and K goods. We assume that agents’ prefer-

ences do not vary but that endowments do. Let ui be a utility function that represents

agent i’s preferences. Let Ωi ⊆ RK
+ be the set of agent i’s possible endowments. We

assume that the planner can only transfer goods among players. Then, the allocation

set contains the set of the balanced net transfers and the generalized punishment point,

A = {x ∈ RK×n :
∑n

s=1 xs = 0} ∪ {G}. For all ω ∈ Ω the feasible set is A(ω) = {x ∈ A :

xi + ωi ≥ 0 for i = 1, ..., n} ∪ {G}. Then A(ω′) ⊆ A(ω) if and only if ω′ ≤ ω. In order

to describe preferences on net transfers, note that the utility agent i gets from transfer xi

when her endowment is ωi is ui(xi + ωi). Thus, utility functions are state dependent even if

preferences are not. Let ui(G) = ui(0)− ε, ε > 0.

In this environment and with more than two agents, h-monotonicity is necessary and

sufficient for F to be h-implementable in Nash equilibrium. It is easy to see that reversion

functions might be rewarding. For instance, starting from an allocation in which agents are

given goods that they scarcely care about, if the endowment of one good is reduced by, say,

1% and renegotiation does not entail any cost, it is possible to renegotiate this allocation in

a way in which all of them are better off. The non-rewarding condition is plausible here if

we assume that renegotiation is sufficiently costly -e.g. delay, transaction costs, etc.- for at

least one agent.

Let us translate conditions WU and GCC into this framework. First consider WU. One

can easily see that it suffices to consider only endowments ω, ω′ such that ω′ ≤ ω. Then WU

amounts to the following condition:

Condition α : For all ω, ω′ ∈ Ω such that ω′ ≤ ω , if a ∈ F (ω) \A(ω′) there exists i such

that ui(ωi + ai) ≥ ui(ωi − ω′i).

Observe that if (0, ωi) ⊆ Ωi for all i then Condition α only requires the SCR to be
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individually rational for at least one agent. It is a very weak requirement and it is obviously

satisfied by many SCR, e.g., any Pareto efficient or any individually rational SCR.

Stronger requirements are imposed by GCC. In this case it also suffices to consider only

endowments ω, ω′ ∈ Ω such that ω′ ≤ ω. GCC is satisfied if and only if the following

condition holds:

Condition β. For all ω, ω′ ∈ Ω such that ω′ ≤ ω, if a ∈ F (ω) ∩ A(ω′) and a /∈ F (ω′)

there exists i and x ∈ A(ω′) such that

ui (ωi + ai) ≥ ui (ωi + xi)

ui (ω′i + ai) < ui (ω′i + xi)

Let us compare our conditions with Hong [10], Corollary 1, p. 216. She showed that

a SCR is implementable by a collection of state dependent mechanisms if and only if the

following condition is satisfied

ui(ωi + fi(ω)) ≥ ui(ωi − ω′i) for all i (H)

Our Condition (α) is weaker than condition (H): If x ∈ A(ω′), then ui(ωi + xi) ≥ ui(ωi− ω′i)

for all i as all ui are increasing. Then if f(ω) ∈ A(ω′), ui(ωi + fi(ω)) ≥ ui(ωi − ω′i) for all i.

So for all ω, ω′ such that f(ω) ∈ A(ω′) condition (H) holds.

Note that our condition depends on the fact that each agent cannot simply retain part of her

endowment. She has to make it compatible with other agents’ messages. But our Condition

(β) is not implied by Condition (H). Assume for instance that f(ω) ∈ A(ω′) then (H) imposes

no restrictions on f(ω′).

If the translations by ω−ω′ of all agents’ indifference curves through ω′+f(ω) are strictly

above all agents’ indifference curves through ω + f(ω), then condition (β) implies f(ω) =

f(ω′). Formally, if
⋂n

i=1 {y : ui(ω
′
i + fi(ω))) = ui(yi)} ⊆

⋂n
i=1 {y : ui(yi + ωi − ω′i) > ui(ωi + fi(ω))}
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, condition (β) imposes that f(ω) = f(ω′).

The difference between our conditions and Hong’s is explained by the fact that her goal is to

design one feasible mechanism (M(ω), g(ω)) for each possible endowment ω, in a way such

that the larger the feasible set, the larger the message space. Two of her assumptions make

our approaches different: i) Hong assumes that players cannot exaggerate their endowment

and that they can be punished for the message they send and not only for the allocation they

intend to obtain if such an allocation is not feasible; and ii) Hong gives each player the power

to retain part of her endowments. We assume that players can collectively cheat the planner

through the mechanism by asking for a feasible allocation in which some agents retain a part

of their endowment.

Let us first study the implementation of the Constrained Walrasian SCR.6 The allocation

a ∈ A (ω) is a Constrained Walrasian Allocation (CWA) at ω if there exists p ∈ RK
+ such that

a ∈ arg max {ui(ωi + xi) : pxi ≤ 0, x ∈ A(ω)} for all i. Such a p is said to be an equilibrium

price supporting a at ω. Let CW (ω) denote the set of CWA at ω.

Proposition 3 Let utility functions be increasing, continuous and quasi-concave. Let Ωi =

(0, ωi) for all i for some ωi ∈ (0,∞). Then the Constrained Walrasian SCR is implementable

in Nash Equilibrium by generalized severe punishment.

Proof. Under our assumptions, CW (ω) is not empty for all ω ∈ Ω. In order to prove the

claim it suffices to show that CW satisfies Condition β. Let ω′ ≤ ω, a ∈ CW (ω) ∩ A(ω′)

and a /∈ CW (ω′). Let p be an equilibrium price at ω. Then there exist x ∈ A(ω′) with

ui(ω
′ + xi) > ui(ω

′ + ai) and pxi ≤ 0 for some i. A(ω′) ⊆ A(ω) so x ∈ {pxi ≤ 0, x ∈ A(ω)} .
6The Walrasian Correspondence defined by WC(ω) = arg max {ui(ωi + xi) : pxi ≤ 0} is not imple-

mentable in Nash Equilibrium for the same reasons that prevent the standard Nash implementability of

WC.
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From the definition of CW it follows that ui (ωi + ai) ≥ ui (ωi + xi). Then CW satisfies

Condition β.

A similar result holds for fixprice equilibria. Here we use the definition of Younès equi-

librium (Younès [26]), though there are other concepts of fixprice equilibria, such as Drèze’s

equilibrium [6] (see also Grandmont and Laroque [7]), which includes restrictions on sales

and Benassy’s equilibrium [7]), which uses rationing schemes. Silvestre [23] proved that the

three concepts are equivalent.

Definition 8 Given a vector of prices p, an allocation x∗ is a Constrained Younès Equilib-

rium at ω if it satisfies:

(i)
n∑

i=1

x∗i = 0

(ii) For all i x∗i + ωi maximizes ui on the set{
zi − ωi : zi ∈ RK

+ ,min
{
x∗ij, 0

}
≤ zij − ωij ≤ max

{
x∗ij, 0

}
, p(zi − ωi) ≤ 0

}
∩ A(ω)

(iii) There exist no pair of consumers (i, h), a commodity k and a real number ε > 0 such

that ui(ωi + x∗i + εak) > ui(ωi + x∗i ) and uh(ωh + x∗h− εak) > ui(ωh + x∗h), where ak is defined

by ak
1 = −pk, ak

k = 1 and aj
t = 0 for t 6= 1, k.

We obtain the following result using the same argument as in Proposition 3:

Remark 2 The constrained Younès Equilibrium correspondence is implementable in Nash

Equilibrium by generalized severe punishment.

5.2 Bargaining with Unknown Utility Possibility Set

Let us now consider non-cooperative implementation of cooperative solution concepts (Dagan

and Serrano [4] and Naeve [17]). A bargaining problem is a pair (U, v) where U ⊆ Rn
+ is

the utility possibility set and v ∈ U is the disagreement point. We assume that U is convex,
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closed, with a non-empty interior and comprehensive (i.e. u ∈ U and u′ ≤ u, u′ ∈ Rn
+ implies

u′ ∈ U). For each bargaining problem (U, v), let Uv = {u ∈ U : u ≥ v} be bounded. The

Nash Bargaining Solution (NBS) is defined as NBS(U, v) = arg maxu∈Uv

∏n
i=1(ui − vi). Let

NBS(U, v)i be the utility awarded to i by the NBS. For further reference we notice that this

solution is characterized by the following properties: strong efficiency, individual rationality,

scale covariance, symmetry and independence of irrelevant alternatives.

We consider Uv ∪ {G} as the feasible set of (U, v). It is clear that in this environment the

non-rewarding property holds because if a utility allocation is renegotiated, the utility of

at least one agent must fall. Therefore, there is no loss of generality in considering only

non-rewarding reversion functions. In fact, we consider a non-rewarding reversion function

more suited to the situation and assume that all infeasible allocations are reverted to the

disagreement point. Let h denote such reversion function, which we will call non-severe

because h(a, ω) 6= G for all a ∈ A and all ω ∈ Ω. Clearly, h is non-rewarding. Agent i’s

reverted preferences at (U, v) are described by

uh
i (u, (U, v))) = ui if u ∈ Uv

uh
i (u, (U, v)) = vi, otherwise.

We first notice that if the disagreement point is not known by the planner, NBS fails

to satisfy GCC: Let n = 2 and let U =
{
x ∈ R2

+ : x2
1 + x2

2 ≤ 1
}
. Let v = (0, 0) and let

v′ =
(√

2
2
, 0
)
. Then NBS(U, v) =

(√
2

2
,
√

2
2

)
∈ Uv′ ⊆ Uv but NBS(U, v) 6= NBS(U, v′).

Thus, according to Proposition 1, NBS is not implementable in NE by any non-rewarding

reversion function.7

The Kalai-Smorodinski solution does not satisfy GCC even with a fixed disagreement point.
7This result agrees with the findings of Serrano [21]. A different interpretation of preferences on the

utility possibility set may lead to more permissive results. One can interpret them as a measure of agents’

satisfaction with respect to the disagreement point. Let ui(u, (U, v)) = ui− vi. Then the preferences induced
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Proposition 1 implies that it cannot be implemented in NE by any reversion function.

Instead, when the disagreement point is known, the NBS satisfies both GCC and WU, as the

reader can easily verify. However, Proposition 2 cannot be used to conclude that the NBS is

implementable by generalized severe punishment because it does not satisfy no-veto and the

Maskin Theorem requires at least three agents (see Remark 1).

We prove the result directly by using the characterizations developed by Moore and

Repullo [16].

Proposition 4 Let n ≥ 2. The Nash Bargaining Solution is h-implementable in Nash Equi-

librium with the non-severe reversion function if the disagreement point v is known.

Proof. Let x = NBS(U, v). Let i ∈ I and let (U ′, v) be a bargaining problem. Let

u ∈ Lh
i (x, (U, v)) such that, at (U ′, v) and with reverted preferences u is maximal for i

in Lh
i (x, (U ′, v)) and u is maximal in Rn

+ for all agents different from i. We prove that

u = NBS(U ′, v). Observe that it must be the case that u is feasible at U ′ otherwise all

agents different from i would prefer some point in the interior of U ′v. Furthermore, uj =

max
{
u′j : u′ = (u′j, u

′
−j) ∈ U ′v

}
for all j 6= i. In particular u lies on the boundary of U ′.

We prove the claim by contradiction. Assume that u 6= NBS(U ′, v). It must be the case

that NBS(U ′, v)i > ui. If NBS(U ′, v) /∈ Uv then u is not maximal in Lh
i (x, (U, v)) for

i when preferences are reverted at (U ′, v), a contradiction. So, it must be the case that

by h are

uh
i (u, (U, v)) = ui − vi if u ∈ Uv

uh
i (u, (U, v)) = 0 otherwise

Observe that uh
i (u, (U, v)) = uh

i (u − v, (U − v, 0)). The reader can easily check that from the translation

invariance property of the NBS, the analysis of the problem with unknown disagreement point amounts to

the previous situation with the disagreement point fixed and known at 0. In this case, applying Proposition

4 below yields a positive result.
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NBS(U ′, v) ∈ Uv. Furthermore, NBS(U ′, v) 6= NBS(U, v) and NBS (U, v) /∈ U ′v′ otherwise

u would not be maximal in Lh
i (x, (U, v)) for i under reverted preferences. Consider the

segment joining NBS(U ′, v) and u. Such a segment lies in U ′v because U ′v is convex and

it intersects {u′ ∈ Uv : NBS(U, v)i ≥ u′i } because Uv is convex and NBS (U, v) /∈ U ′v. All

along the segment, the coordinate i increases from u′i to NBS(U ′, v)i. Then there exists a

point in {u′ ∈ Uv : NBS(U, v)i ≥ u′i } which has the ith coordinate strictly greater than ui, a

contradiction. Let u be maximal in Rn
+ for all agents when preferences reverted at (U ′, v) then

uj = max
{
u′j : u′ = (u′j, u

′
−j) ∈ U ′v

}
for all j. From efficiency it follows that u = NBS(U ′, v).

NBS satisfies Individual Rationality, Pareto efficiency and GCC, too. Then, when n ≥ 3,

the family of sets
{
Lh(x, (U, v))

}
x=NBS(U,v)

satisfies condition µ in Moore and Repullo [16].

When n = 2 it satisfies condition µ1 in the same paper because of the disagreement point.

The application of Theorems 1 and 2 there, respectively, leads to the claim.

5.3 Taxation

A taxation problem is a pair (x, T ) ∈ Rn
+ × R+ where x is the vector of taxable incomes

and T is the total amount to be collected such that
∑n

i=1 xi ≥ T (Dagan et al. [5]). A

tax allocation t for the taxation problem (x, T ) is a vector in Rn
+ such that t ≤ x and∑n

i=1 ti = T . A taxation rule is a function f which assigns a tax allocation to each taxation

problem. We assume that the planner knows the amount to be collected, T , but does not

know the taxable vector x. Let Sn(T ) =
{
t ∈ Rn

+ :
∑n

i=1 ti = T
}
be the set of tax allocations

that collect T . Let Ωn(T ) =
{
x ∈ Rn

+ :
∑n

i=1 xi ≥ T
}
be the set of the states of the world.

Let T n(x) = T n(x, T ) =
{
t ∈ Rn

+ : 0 ≤ t ≤ x,
∑n

i=1 ti = T
}
∪ {G} be the set of feasible

tax allocations at x. Each agent’s preferences only depend on her after tax income and are

strictly increasing. Then we can write ui(t, x) = xi − ti for each x ∈ Ωn(T ) and for each

t ∈ T n(x, T ) \ {G}. Assume that only income exaggeration can be detected and punished. It
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is clear that in this environment, any reversion function must be non-rewarding so there is

no loss of generality in considering only the latter. Therefore, the hypothesis of Proposition

1 is fulfilled.

We now characterize GCC in this environment.

Proposition 5 A taxation rule satisfies GCC if and only if f(x) = f(x′) for all x, x′ such

that f(x) ≤ x′ ≤ x.

Proof. The necessity of the condition follows directly from the definition of GCC, because

T n(x′) ⊆ T n(x) if and only if x′ ≤ x. We next prove the sufficiency of the condition.

Let t = f (x) ∈ T n (x′). First consider x, x′ ∈ Ωn (T ) such that x′ ≤ x. Then T n(x′) ⊆

T n(x). This implies that f(x) ≤ x′ ≤ x. It follows that f (x) = f (x′). So the condition

required by GCC is satisfied. Now consider the case in which xj < x′j for at least one

j. The condition T n(x′) \ T n(x) ⊆ Li (t, x′) for all i is equivalent to T n(x′) \ T n(x) ⊆⋂n
i=1 Li (t, x′) = {t} ∪ {G}. It is impossible in this case because the set T n(x′) \ T n(x) ⊇{
t ∈ Rn

+ : 0 ≤ t ≤ x′, xj < t ≤ x′j,
∑n

i=1 ti = T
}
is not empty and has the cardinality of the

continuum. In this case, the condition required by GCC holds emptily.

Under the no-exaggeration assumption, any taxation rule can be implemented in NE (see

Dagan et al. [5]). It is no longer true in our framework. Consider the proportional taxation

rule, defined as

fi (x) =
xi∑n
i=1 xi

T, for i = 1, ..., n

Such a rule is not implementable in Nash equilibrium under any reversion function. We prove

the claim by contradiction. Assume that f is implementable. Let x∗ ∈ Ωn (T ). Observe that

0 < fi (x∗) < x∗i for all i. From the continuity of f , it follows that there is a neighborhood U

of x∗ that 0 < fi (x) < x∗i for i = 1, ..., n, if x belongs to U . Let x ∈ U ∩ {x : x∗ ≤ x} which
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is not empty. We have 0 < f (x) < x∗ ≤ x for all such x. As f is monotonic, Proposition 5

implies that f (x) = f (x∗), which yields a contradiction.

More in general, let f be a continuous taxation rule such that for some x, 0 < fi (x) < xi

for all i. If f is continuous but not constant whenever incomes are larger than proposed taxes

for x, it cannot be implemented in our framework (the proof is available on request).

The difference between our result and the results obtained by Dagan et al. [5] stems from

the fact that no exaggeration of incomes is possible in their approach, and, hence, many

profitable deviations are ruled out.

6 Conclusions

This paper presents a new approach to dealing with the implementation problem when fea-

sible sets are state dependent. It is based on the idea that feasibility is restored by a process

that is independent of the mechanism and that reflects how agents renegotiate infeasible al-

locations into feasible ones or the working of institutions designed to cope with infeasibility.

We have presented a class of reversion functions that are suited to our problem and we have

found necessary and sufficient conditions for implementation when renegotiation takes this

form. Finally, we have used our characterization results to study the implementation in Nash

equilibrium of social choice rules in exchange economies, bargaining problems and taxation

methods, and we have compared our results with those obtained in earlier literature.

A feature of the traditional approach of implementation when feasible sets are state

dependent is that it requires a collection of state dependent mechanisms, which stands in

contrast to the case when preferences are state dependent. This distinction differs vividly

from our intuition on how markets cope with infeasible allocations, namely that the sign of

excess demand entirely determines the adjustment irrespective of the cause of infeasibility.

Thus, our approach may offer a better understanding of market mechanisms than the
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traditional one, though the traditional approach is better suited to deal with topics such

as withholding of endowments. Our approach can be generalized to deal with this case

by introducing uncertainty in the renegotiation process or by writing the mechanism as an

argument in the reversion function. These two extensions are easy to write, but require

completely new analytical methods and therefore are left for future research.
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