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EFFICIENCY IN GAMES WITH MARKOVIAN PRIVATE

INFORMATION

JUAN F. ESCOBAR AND JUUSO TOIKKA

Abstract. We study repeated Bayesian n-player games in which the players’

privately known types evolve according an irreducible Markov chain. Our main

result shows that, with communication, any Pareto-efficient payoff vector above

a stationary minmax value can be approximated arbitrarily closely in a perfect

Bayesian equilibrium as the discount factor goes to one. As an intermediate step

we construct a dynamic mechanism (without transfers) which is approximately

efficient for patient players given a sufficiently long time horizon.

1. Introduction

Repeated Bayesian games, also known as repeated games of adverse selection,

provide a model of long-run relationships where the parties have asymmetric in-

formation about their objectives.1 It is well known that if each player’s payoff-

relevant private information, or type, is independently and identically distributed

(iid) over time, repeated play can facilitate cooperation beyond what is achievable

in a one-shot interaction.2 In particular, the folk theorem of Fudenberg, Levine,

and Maskin (1994) implies that first-best efficiency can be approximately achieved

as the discount factor tends to one.

However, the iid assumption on types appears restrictive in many applications.

For example, firms in an oligopoly or bidders in a series of procurement auctions

may have private information about production costs, which tend to be autocor-

related. Furthermore, under the iid assumption, there is asymmetric information

only about current payoffs. In contrasts, when types are serially dependent, the

players also have private information about the distribution of future payoffs. This

introduces the possibility of signaling, which presents a new challenge for coop-

eration as a player may be tempted to alter his behavior to influence the other

players’ beliefs about his type.

Date: April 25, 2012. We thank Manuel Amador, Kyle Bagwell, Aaron Bodoh-Creed, Matt Elliot,
Johannes Hörner, Matt Jackson, Carlos Lever, Jon Levin, Romans Pancs, Andy Skrzypacz, and
especially Ilya Segal for useful discussions. We are grateful to the editor and four anonymous
referees for comments. An earlier version was circulated as “A Folk Theorem with Markovian
Private Information.” Contact: jescobar@dii.uchile.cl or toikka@mit.edu.
1For economic applications, see, e.g., Athey, Bagwell, and Sanchirico (2004) on oligopolistic
competition, Levin (2003) on relational contracting, Maggi and Morelli (2006) on voting in in-
ternational organizations, or Skrzypacz and Hopenhayn (2004) on repeated auctions.
2See, e.g., Mailath and Samuelson (2006, Chapter 11)
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In this paper, we study the problem of sustaining efficient cooperation among

patient players in repeated Bayesian games with serially dependent types. More

specifically, we assume that the type profile follows an autonomous irreducible

Markov chain where the evolution of types is independent across players. Focus-

ing on the case of private values (also known as the known-own-payoffs case) and

perfect monitoring of actions, we define the stationary minmax value as the lowest

payoff that can be imposed on a patient player by having the other players play a

constant pure-action profile. Our main result shows that, with cheap-talk commu-

nication, any payoff profile v, which lies in the convex hull of Pareto-efficient pay-

offs and dominates the stationary minmax profile, can be approximately attained

in a perfect Bayesian equilibrium if the players are sufficiently patient and—in

case there are more than two players—a mild restriction on the Pareto frontier

is satisfied. Furthermore, the equilibrium can be taken to be stationary in the

sense of the players’ expected continuation payoffs remaining close to v along the

equilibrium path.

The key step in our proof of this limit-efficiency result is the derivation of an

analogous result for auxiliary reporting games where the players communicate as

in the original game, but actions are automatically implemented by a mechanism.

We introduce the credible reporting mechanism for which payoffs can be bounded

uniformly across equilibria. This allows us to assert the existence of equilibria

with the desired payoffs without solving the players’ best-response problems, or

having to track the evolution of beliefs.3 The rest of the proof then extends a

reporting-game equilibrium into an equilibrium of the original game by using a

similar argument to establish the existence of player-specific punishment equilibria

analogous to the stick-and-carrot schemes of Fudenberg and Maskin (1986).

Our credible reporting mechanism is of independent interest in that it gives an

approximately efficient dynamic mechanism for patient players without assuming

transferable utility.4 It uses a statistical test to assess whether the players’ reports

about their types are sufficiently likely to have resulted from truthful reporting.

(If a player fails the test, his reports are henceforth ignored and replaced with

appropriately chosen random messages.) This construction is inspired by the

linking mechanism of Jackson and Sonnenschein (2007), which employs a message

budget to force the long-run distribution of each player’s reports to match the

true type distribution.5 With iid types the linking mechanism approximately

3While our proof is virtually free of beliefs, the equilibria we identify are in general not “belief
free” or “ex post” in the sense of Hörner and Lovo (2009), Hörner, Lovo, and Tomala (2011), or
Fudenberg and Yamamoto (2011b).
4When utility is transferable, surplus-maximizing decision rules can be implemented using a
dynamic VCG scheme—see Athey and Segal (2007) and Bergemann and Välimäki (2010).
5In the single-agent version the idea goes back at least to Radner (1981) and Townsend (1982).
It is used in the context of a repeated Bayesian game with iid types by Hörner and Jamison
(2007). Independently of our work, Renault, Solan, and Vieille (2011) use the linking mechanism
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implements efficient choice rules given long enough horizon and sufficient patience.

However, when types are Markovian, a player can use his opponents’ past reports

to predict their future types. This gives rise to contingent deviations, which may

undermine the linking mechanism. Our mechanism rules out such deviations by

testing for the convergence of appropriately chosen conditional distributions.

Games with Markovian types were introduced in the reputation literature under

the assumption that the player is replaced upon type change (see, e.g., Cole, Dow,

and English, 1995, Mailath and Samuelson, 2001, or Phelan, 2006). Few papers

consider Markovian types without replacements. The first results are due to Athey

and Bagwell (2008) who analyze collusion in a Bertrand oligopoly with privately

observed costs. They provide an example of a symmetric duopoly with irreducible

two-state costs where first-best collusion can be exactly achieved given sufficiently

little discounting. Athey and Segal (2007) prove an efficiency result for a class

of ergodic Markov games with transfers by showing that their Balanced Team

Mechanism can be made self-enforcing if the players are sufficiently patient and

there exists a “static” punishment equilibrium.

For the special case of iid types equilibrium payoffs can be characterized for a

fixed discount factor using the methods of Abreu, Pearce, and Stacchetti (1990).6

A version of the folk theorem and a characterization of the limit equilibrium payoff

set is provided by Fudenberg, Levine, and Maskin (1994) and Fudenberg and

Levine (1994). At the other extreme, the results of Myerson and Satterthwaite

(1983) imply that in the limiting case of perfectly persistent types there are games

where equilibrium payoffs are bounded away from the first best even when players

are arbitrarily patient.7 Together with our results this shows that the set of

equilibrium payoffs may be discontinuous in the joint limit when the discount

factor tends to one and the chain becomes perfectly persistent.

Finally, our game can be viewed as a stochastic game with asymmetric infor-

mation about the state. Dutta (1995), Fudenberg and Yamamoto (2011a), and

Hörner, Sugaya, Takahashi, and Vieille (2011) prove increasingly general versions

of the folk theorem for stochastic games with a public irreducible state.

The next section illustrates our argument in the context of a simple Bertrand

game. Section 3 introduces the model. The main result is presented in Section

to characterize the limit set of equilibrium payoffs in sender-receiver games where the sender’s
type follows an ergodic Markov chain. The linking mechanism suffices in their case despite serial
dependence because private information is one-sided. Our results are not stronger nor weaker
than theirs since we assume private values whereas their game has interdependent values.
6Cole and Kocherlakota (2001) extend the approach to a class of games that includes ours (see
also Athey and Bagwell, 2008). They operate on pairs of type-dependent payoff profiles and
beliefs. Due to the inclusion of beliefs the characterization is difficult to put to work.
7Starting with the work of Aumann and Maschler (1995) on zero-sum games, there is a sizable
literature on perfectly persistent types (e.g., Athey and Bagwell, 2008, Fudenberg and Yamamoto,
2011b, Hörner and Lovo, 2009, Peski, 2008, or Watson, 2002). Such models are also used in the
reputation literature (e.g., Kreps and Wilson, 1982 and Milgrom and Roberts, 1982).
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4. The proof is developed in Sections 5 and 6 with 5 devoted to the mechanism

design problem and 6 to the construction of equilibria. Section 7 concludes.

2. An Example

Consider repeated price competition between two firms, 1 and 2, whose privately

known marginal costs are θ1 ∈ {L,H} and θ2 ∈ {M,V }, respectively, with L <

M < H < V (for “low, medium, high, and very high”). Firm i’s (i = 1, 2) cost

follows a Markov chain in which with probability p ∈]0, 1[ the cost in period t+ 1

is the same as in period t. The processes are independent across firms. In each

period there is one buyer with unit demand and reservation value r > V . Having

privately observed their current costs, the firms send reports to each other, quote

prices, and the one with the lower price serves the buyer, provided its price does

not exceed r.

This duopoly game is a special case of the model introduced in Section 3, and

hence our limit-efficiency result (Theorem 4.1) applies. To illustrate the proof, we

sketch the argument showing that, given sufficiently little discounting, there are

equilibria with profits arbitrarily close to the first-best collusive scheme where in

each period the firm with the lowest cost makes the sale at the monopoly price r.

2.1. A Mechanism Design Problem. Assume first that the horizon T is large

but finite, and firms do not discount profits. Assume further that the firms only

send cost reports and some mechanism automatically sets the price r for the firm

that reported the lowest cost and r + 1 for the other firm.

If both firms report their costs truthfully, then, for T large, firm 2 makes a sale

in approximately T
4 periods. The resulting (average) profits are approximately

v1 = r−L
2 + r−H

4 for firm 1, and v2 = r−M
4 for firm 2.

Note that if firm i is truthful and firm j 6= i reports as if it were truthful,

then firm i’s profit is still approximately vi because the true cost of firm j does

not directly enter i’s payoff (i.e., we have private values). With this motivation,

consider a mechanism which tests in real time whether the firms are sufficiently

likely to have been truthful. If a firm fails the test, then from the next period

onwards its messages are replaced with random messages generated by simulating

the firm’s cost process. In particular, suppose that (with high probability):

(1) A truthful firm passes the test regardless of the other firm’s strategy.

(2) The distribution of (simulated) reports faced by a truthful firm is the same

as under mutual truth-telling regardless of the other firm’s strategy.

Then each firm i can secure an expected profit close to vi, say vi − ε, simply by

reporting truthfully, and hence in any equilibrium its expected profit is at least

vi − ε. As the profile v = (v1, v2) is Pareto efficient, this implies that the set of

expected equilibrium profits in the mechanism is concentrated near v.



EFFICIENCY IN GAMES WITH MARKOVIAN PRIVATE INFORMATION 5

M V

L .5(1− p) .5p

H .5p .5(1− p)

Figure 1. Distribution of reports when firm 1 reports truthfully
and firm 2 reports M iff firm 1 reported H in the previous period.

This observation is established for the general model in Theorem 5.1 by consid-

ering credible reporting mechanisms, which satisfy appropriate formalizations of

(1) and (2). To motivate the construction, it is instructive to start with iid costs.

Jackson and Sonnenschein (2007) show that when costs are iid (i.e., p = 1
2), a

mechanism that satisfies (1) and (2) can be obtained by assigning to each firm a

budget of reports with T
2 reports of each type. This linking mechanism approxi-

mately satisfies (1) for T large enough by the law of large numbers. As for (2), it

is useful to decompose the condition into the following requirements:

(2a) The marginal distribution of each firm’s reports matches the truth.

(2b) The distribution faced by a truthful firm is the product of the marginals.

Then (2a) follows by construction of the budgets. For (2b), suppose that, say, firm

1 reports truthfully. Then its reports are a sequence of iid draws, generated inde-

pendently of firm 2’s costs. Therefore, it is impossible for firm 2 to systematically

correlate its reports with those of firm 1. This establishes (2b).

When costs are autocorrelated (i.e., p 6= 1
2), the budgets in the linking mecha-

nism still give (1) and (2a). However, (2b) fails as a firm can use its competitor’s

past reports to predict its current report. For example, suppose firm 1 reports

truthfully but firm 2 deviates and reports M if and only if firm 1 reported H in

the previous period. This leads to the distribution depicted in Figure 1, whereas

under mutual truth-telling each report profile has probability 1
4 for all p.8

In order to guarantee (1) and (2) when costs are autocorrelated, our credi-

ble reporting mechanism requires that each firm’s reports resemble its true cost

distribution conditional on the other firm’s reports. In particular, it tests, for

every fixed profile of previous period reports (θ1, θ2) and a current report θj for

firm j, whether the reports of firm i 6= j are sufficiently likely to have resulted

from truthful reporting. For example, along the random subsequence of periods in

which firm 1 reported H and the previous-period reports were (H,V ), under the

null hypothesis of truth-telling the reports of firm 2 are iid draws with the proba-

bility of L being 1− p. Thus the mechanism requires that along this subsequence

8Note that the deviation leads to firm 2 making the sale in approximately pT
2

periods, earning

an expected profit p r−M
4

+ p r−V
4

. Thus the deviation is profitable for p large enough, and hence

approximate truth-telling is in general not an equilibrium of the linking mechanism for p 6= 1
2
.
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the frequency with which firm 2 reports L converges to 1 − p at a pre-specified

rate. This rules out the deviation contemplated above.9

Lemma 5.1 shows that the credible reporting mechanism satisfies (1) and (2).

The proof takes some work because of the need to consider arbitrary strategies for

non-truthful players, but the result is conceptually straightforward: (2) follows as

a firm either passes the test and hence satisfies (2), or fails the test and has its

reports replaced by simulated reports which satisfy (2) by construction. As for

(1), note that firm i passes the test if the marginal distribution of its reported

cost transitions converges to the truth, and these transitions appear sufficiently

independent of those of firm j 6= i. If i is truthful, then the first part is immediate,

and the second follows as the test conditions on a previous-period report profile

so that, by the Strong Markov property, the argument reduces to the iid case.

2.2. From the Mechanism to Game Equilibria. In order to construct equi-

libria of the original pricing game, we need to introduce discounting, extend the

result to an infinite horizon, and make the mechanism self-enforcing.

Discounting can be introduced simply by continuity since the mechanism design

problem has a finite horizon.

We cover the infinite horizon by having the firms repeatedly play the credible

reporting mechanism over T -period blocks. This serves to guarantee that continu-

ation profits are close to the target at all histories. It is worth noting that because

of autocorrelation in costs, it is not possible to treat adjacent blocks independently

of each other. However, the lower bound on profits from truthful reporting applies

to each block and provides a bound on the continuation profits in all equilibria of

the block mechanism (Corollary 5.1).

Finally, an equilibrium of the block mechanism is extended to an equilibrium of

the original game by constructing off-path punishments that take the form of stick-

and-carrot schemes. For example, if firm 1 deviates by quoting a price different

from what the mechanism would have chosen, then firm 2 prices at L during the

stick while firm 1 best responds. The carrot is analogous to the cooperative phase,

but has firm 2 selling—still at the monopoly price—more frequently than on the

equilibrium path to reward it for the losses incurred during the stick.

Formally, the punishment equilibria are obtained by bounding payoffs uniformly

across the equilibria of a punishment mechanism which appends a minmax phase

to the beginning of the credible reporting mechanism (Lemma 6.1). Checking

incentives is then analogous to Fudenberg and Maskin (1986) (see Section 6.2).

9Note that simply augmenting the linking mechanism with a test of independence of contempora-
neous reports would rule out the deviation, but the resulting mechanism fails property (1). Our
test conditions on firm 1’s previous report to solve this problem. Conditioning on the contem-
poraneous reports is still needed with three or more firms to ensure that the joint distribution
converges to a product distribution. (An analogous problem arises in a static model—see Jackson
and Sonnenschein, 2007.) Conditioning on firm 2’s previous report is for convenience.
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3. The Model

3.1. The Stage Game. The stage game is a finite Bayesian normal-form game

u : A×Θ→ Rn,

where A =
∏n
i=1Ai and Θ =

∏n
i=1 Θi for some finite sets Ai,Θi, i = 1, . . . , n. The

interpretation is that each player i = 1, . . . , n has a privately known type θi ∈ Θi

and chooses an action ai ∈ Ai. As usual, u is extended to ∆(A×Θ) by expected

utility.10 In the proofs we assume without loss that u(A×Θ) ⊂ [0, 1].

The players are assumed to know their own payoffs, stated formally as follows.

Assumption 3.1 (Private Values). For all a ∈ A, θ ∈ Θ, θ′ ∈ Θ, and i = 1, . . . , n,

θi = θ′i ⇒ ui(a, θ) = ui(a, θ
′).

Given the assumption, we write ui(a, θi) for ui(a, θ).

3.2. The Dynamic Game. The dynamic game has the stage game u played with

communication in each period t = 1, 2, . . . The extensive form corresponds to a

multi-stage game with observable actions and Markovian incomplete information

where each period t is divided into the following substages:

t.1 Each player i privately learns his type θti ∈ Θi.

t.2 The players simultaneously send public messages mt
i ∈ Θi.

t.3 A public randomization device generates ωt ∈ [0, 1].

t.4 The stage game u is played with actions ati ∈ Ai perfectly monitored.

The public randomizations are iid draws from the uniform distribution on [0, 1]

and independent of the players’ types.11

Player i’s type θti evolves according to an autonomous Markov chain (λi, Pi) on

Θi, where λi is the initial distribution and Pi is the transition matrix. We make

two assumptions about the players’ type processes.

Assumption 3.2 (Independent Types). (λi, Pi), i = 1, . . . , n, are independent.12

Let (λ, P ) denote the joint type process on Θ.

Assumption 3.3 (Irreducible Types). P is irreducible.13

10For any finite set X, we write ∆(X) for the set of all probability measures on X.
11Since we allow for communication, there is a sense in which public randomizations are redun-
dant: If the set of possible messages is large enough, the players can conduct jointly-controlled
lotteries to generate such randomizations endogenously (see Aumann and Maschler, 1995).
12Independence of transitions is crucial for the argument. However, independence of initial
distributions is only for convenience. Together they imply that the equilibrium beliefs are public,
which simplifies the description of the equilibrium. All results hold verbatim for an arbitrary λ.
13Under Assumption 3.2, a sufficient (but not necessary) condition for P to be irreducible is that
each Pi is irreducible and aperiodic (i.e., that each Pi is ergodic).
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Irreducibility of P implies that the dynamic game is stationary, or repetitive,

and there exists a unique invariant distribution denoted π. Independence across

players implies that the invariant distribution takes the form π = π1 × · · · × πn,

where πi is the invariant distribution for Pi.

Given stage-game payoffs (vti)
∞
t=1, player i’s dynamic game payoff is

(1− δ)
∞∑
t=1

δt−1vti ,

where the discount factor δ ∈ [0, 1[ is common for all players.

3.3. Histories, Assessments, and Equilibria. A public history consists of past

messages, realizations of the randomization device, and actions. The set of all

public histories in period t ≥ 1 is

Ht = (Θ× [0, 1]×A)t−1 ∪
(
(Θ× [0, 1]×A)t−1 ×Θ× [0, 1]

)
.

The first set in the union consists of all public histories the players may face

at stage t.2 when they are about to send messages; the second consists of all

feasible public histories at t.4 when the players are about to choose actions. Let

H = ∪t≥1H
t.

A private history of player i in period t consists of the sequence of types the

player has observed up to and including period t. The set of all such histories is

denoted Ht
i = Θt

i. Let Hi = ∪t≥1H
t
i .

A (behavioral) strategy for player i is a sequence σi = (σti)t≥1 of functions

σti : H
t×Ht

i → ∆(Ai)∪∆(Θi) with σti(· | ht, hti) ∈ ∆(Θi) if ht ∈ (Θ× [0, 1]×A)t−1,

and σti(· | ht, hti) ∈ ∆(Ai) if ht ∈ (Θ× [0, 1]×A)t−1 ×Θ× [0, 1]. A strategy profile

σ = (σi)
n
i=1 and the type process (λ, P ) induce a probability distribution over

histories in the obvious way.

As types are independent across players and actions are observable, we assume

that the players beliefs about private histories satisfy the standard restrictions

imposed by perfect Bayesian equilibrium in multi-stage games with observable

actions and incomplete information: (i) players −i have common beliefs about

player i, (ii) beliefs are independent across players, and (iii) “players cannot signal

what they don’t know” (see Fudenberg and Tirole, 1991).

Formally, public histories ht and ĥt in H are i-indistinguishable if either

(i) ht = (ht−1, a) and ĥt = (ht−1, â) for ht−1 ∈ H, a, â ∈ A such that ai = âi,

or

(ii) ht = (h̃t,m, ω) and ĥt = (h̃t, m̂, ω̂) for h̃t ∈ H, (m,ω), (m̂, ω̂) ∈ Θ × [0, 1]

such that mi = m̂i.

The common (public) beliefs about player i are given by a sequence µi = (µti)t≥1

of functions µti : H
t → ∆(Ht

i ) such that µti(h
t) = µti(ĥ

t) whenever ht and ĥt are
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i-indistinguishable. A profile µ = (µi)
n
i=1 is called a belief system. Given a belief

system µ, player j’s belief about the private histories of players −j at a public

history ht is the product measure
∏
i 6=j µ

t
i(h

t) ∈
∏
i 6=j ∆(Ht

i ).

An assessment is a pair (σ, µ) where σ is a strategy profile and µ is a belief

system. Given an assessment (σ, µ), let uµi (σ | ht, hti) denote player i’s expected

continuation payoff at history (ht, hti), i.e., the expected discounted average payoff

of player i from history (ht, hti) onwards (period t inclusive) when the expectation

over i’s rivals’ private histories is taken according to µ and play evolves according

to σ. An assessment (σ, µ) is sequentially rational if for any player i, any history

(ht, hti) and any strategy σ′i, u
µ
i (σ | ht, hti) ≥ uµi (σ′i, σ−i | ht, hti). An assessment

(σ, µ) is a perfect Bayesian equilibrium (henceforth, PBE) if it is sequentially

rational and µ is computed using Bayes rule given σ wherever possible (both on

and off the path of play).

3.4. Feasible Payoffs. Write (f t)t≥1 for a sequence of decision rules f t : Θt ×
[0, 1]t → A mapping histories of types and public randomizations into actions.

The set of feasible payoffs in the dynamic game with discount factor δ is then

V (δ) =
{
v ∈ Rn | ∃(f t)t≥1 s.t. v = (1− δ)E(f t)t≥1

[ ∞∑
t=1

δt−1u(at, θt)
]}
.

Consider the set of payoffs attainable using a pure decision rule in a one-shot

interaction in which types are drawn from the invariant distribution, or

V p =
{
v ∈ Rn | ∃f : Θ→ A s.t. v = Eπ

[
u(f(θ), θ)

]}
.

Let V = co(V p) denote the convex hull of V p.

Lemma 3.1 (Dutta, 1995). As δ → 1, V (δ) → V in the Hausdorff metric uni-

formly in the initial distribution λ.

Heuristically, the result follows from noting that given the stationary environ-

ment, stationary (randomized) decision rules are enough to generate all feasible

payoffs, and for δ close to 1 the expected payoff from a stationary rule under an

irreducible process depends essentially only on the invariant distribution. Consult

Dutta (1995) for details.

In what follows we investigate what payoffs v ∈ V can be attained in equilib-

rium when players are patient, keeping in mind that in this case V (δ) is well-

approximated by V .

3.5. Minmax Values. We define player i’s stationary (pure-action) minmax value

as

vi = min
a−i∈A−i

Eπi
[

max
ai∈Ai

ui((ai, a−i), θi)
]
,
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which can be interpreted as the pure-action minmax value in a one-shot game

where types are distributed according to the invariant distribution π. Thus in

the special case of iid types, vi is simply the standard pure-action minmax value.

Some remarks are in order.

Our motivation for this definition is pragmatic: vi is approximately the lowest

payoff that can be imposed on a patient player i by having players −i play a

fixed pure-action profile for a large number of periods while player i best responds

knowing his current type. This facilitates constructing stick-and-carrot punish-

ments that generate payoffs close to vi during the stick phase. For example, in the

Bertrand game studied by Athey and Bagwell (2008) (and considered in Section 2)

this actually yields a tight lower bound on the set of individually-rational payoffs:

Example 3.1 (Bertrand competition/First-price auction). Each player i is a firm

that sets a price ai ∈ Ai ⊂ R+, where {0, 1} ⊂ Ai. There is only one buyer

demanding one unit of the good each period, having a reservation value r ∈]0, 1[,

and buying from the firm setting the lowest price (randomizing uniformly in case

of a tie). Firm i’s marginal cost is θi ∈ Θi ⊂ R+ and therefore its profit is given

by ui(a, θi) = (ai − θi)1{ai=minj aj}
1

|{k|ak=minj aj}| . Then vi = 0, since the profit is

nonpositive at a−i = 0, whereas firm i can guarantee a zero profit with ai = 1.

In general there may be equilibria generating payoffs strictly below vi. In our

dynamic game, the proper minmax value is given by a problem of the form

min
σ−i

max
σi

Eλi,σ
[
(1− δ)

∞∑
t=1

δt−1ui(a
t, θti)

]
.

This can be interpreted as the value of a discounted zero-sum game with Markovian

private information on one side (see Renault (2006) or Neyman (2008) for the

undiscounted case). However, the definition is difficult to put to work as little

is known about the optimal strategy of the uninformed player (here, players −i)
in such games.14 The stationary minmax value allows us to bypass this issue at

the cost of lessening the punishments in some games. This entails two possible

limitations.

First, considering only pure actions in the definition of vi is obviously restrictive

in general even with iid types. Indeed, as complete information games are a special

case of our model, we may take u to be the standard matching pennies game to

see that in the worst case we may even have vi = maxa,θi u(a, θi) with the vector

v lying outside the feasible set V . We have nothing to add to this well-known

observation.15

14This approach is used by Hörner and Lovo (2009) in games with perfectly persistent types
where the strategy of the uninformed player is given by the approachability result of Blackwell
(1956).
15Fudenberg and Maskin (1986) proved a mixed minmax folk theorem for complete information
games by adjusting continuation payoffs in the carrot phase so that during the stick phase players
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L R

U θ1 0

D 0 1− θ1

Figure 2. The payoff of player 1 for θ1 ∈ {0, 1} in Example 3.2.

Second, and more pertinent to the current setting, players −i should in general

tailor the punishment to the information they learn about player i’s type during

the punishment. This is illustrated by the following example.

Example 3.2 (Renault (2006)). Consider a two-player game where A1 = {U,D},
A2 = {L,R}, Θ1 = {0, 1}, and Θ2 = {0}. The stage-game payoffs of player 1

are depicted in Figure 2. Player 1’s type follows a Markov chain where θt1 = θt−1
1

with probability p ∈ [1
2 , 1[. By symmetry, π1(θ1) = 1

2 for θ1 ∈ Θ1. The stationary

minmax value is vi = 1
2 (even if mixed strategies were allowed in the definition).

Hörner, Rosenberg, Solan, and Vieille (2010) show that in the limit as δ → 1 the

proper minmax value of player 1 is vp = p
4p−1 for p ∈ [1

2 ,
2
3 ]. Thus for patient

players the two coincide in the iid case (i.e., v 1
2

= v1), but differ whenever there

is serial correlation (i.e., vp < vi for all p ∈]1
2 ,

2
3 ]). Heuristically, the reason is

that player 1’s myopic best response reveals his type. This is harmless in the iid

case, but allows player 2 to tailor the punishment when types are correlated.

The above limitations notwithstanding, there is an important class of dynamic

games in which vi is in fact a tight lower bound on player i’s individually rational

payoffs. These are games where the stage game u is such that for every player i

and all θi ∈ Θi, the mixed minmax value minα−i∈∆(A−i) maxai∈Ai ui(ai, α−i, θi) is

achieved in pure strategies, and

∅ 6=
⋂
θi∈Θi

arg min
a−i∈A−i

max
ai∈Ai

ui(a, θi).

Then the intersection on the right contains a pure action profile a−i ∈ A−i such

that for all types of player i, a−i is the harshest possible punishment. While

this property is arguably special, it is true for many familiar games including the

are indifferent over all actions in the support of a mixed minmax profile, and hence willing to mix.
Extending this logic to our setting faces two problems: (1) variation in payoffs during the stick
phase is private information, and (2) our methods characterize continuation values only “up to an
ε.” Alternatively, following Gossner (1995), it is possible to use a statistical test to make sure that
the punisher is mixing in the right proportions (triggering a punishment against him if he fails the
test). Again, some difficulties arise in extending the argument to our model. The construction
of our punishment mechanism (see Section 6.1) would need to allow the minmaxing players to
pick actions, for in the repeated game their strategies will be the minmaxing distribution up to
some ε. This opens the door for signaling. Furthermore, in a dynamic (rather than repeated)
game, the test would need to impose restrictions on conditional distributions as in our credible
reporting mechanisms, which makes the constructions more involved. These generalizations are
left for future work.
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C D

C β − θ1, β − θ2 1− θ1, 1

D 1, 1− θ2 0, 0

Figure 3. The payoff function for the public good game of Example 3.4.

Bertrand game of Example 3.1, or a Markov version of the repeated agency of

Levin (2003) where the principal can impose a nonpositive payoff on every type

of the agent by offering a zero salary and no discretionary bonus, and the agent

can guarantee his outside option by exerting no effort. We finish this section with

three more examples of such games.

Example 3.3 (Cournot competition). Each player i is a firm that chooses a

quantity ai ∈ Ai ⊂ R+, where 0 ∈ Ai. The market price is given by the positive

and decreasing inverse demand p(
∑

i ai). Firm i’s cost function takes the form

ci(ai, θi) ≥ 0, where ci(0, θi) = 0 and ci(ai, θi) is nondecreasing in ai for all θi ∈ Θi.

Thus its profit is ui(a, θi) = p(
∑

j aj)ai − ci(ai, θi). Assuming that for all i there

exists ā−i ∈ A−i such that p(
∑

j 6=i āj) = 0, we deduce that vi = 0 for all i since

i’s rivals can flood the market by setting a−i = ā−i, whereas firm i can guarantee

a zero profit by setting ai = 0.

Example 3.4 (Public good provision/Partnership). In the binary-contribution

game of Palfrey and Rosenthal (1988) (see also Fudenberg and Tirole, 1991), each

of two players chooses whether to contribute (C) or not (D) to a joint project.

Player i’s cost of contributing is θi ∈ Θi ⊂ R+. The project yields a benefit 1 or

β ≥ 1 depending on whether one or two players contributed. The payoff function

is depicted in Figure 3. Then vi = Eπi [max{0, 1−θi}]. Note that the best response

of player i depends on his type.

Example 3.5 (Informal risk sharing). Consider an n-player version of the in-

surance problem of Wang (1995), which is an incomplete-information variant of

the model by Kocherlakota (1996). Each player i is an agent with a random

endowment θi ∈ Θi ⊂ R+. Agent i chooses transfers ai = (ai,1, . . . , ai,n) in

Ai(θi) ⊂
{
ai ∈ Rn+ |

∑
j ai,j ≤ θi

}
, 0 ∈ Ai(θi).

16 His utility of consumption is

given by ui(a, θi) = ūi(θi−
∑

j(ai,j−aj,i)), where ūi is nondecreasing and concave.

Then vi = Eπi [ūi(θi)], since agents −i can opt to make no transfers to agent i,

whereas agent i can guarantee this autarky payoff by consuming his endowment.

16In this game the set of feasible actions Ai(θi) depends on the realized type θi. However,
by letting Ai = ∪θi∈ΘiAi(θi) and defining ui(a, θi) to be some very large negative number if
ai /∈ Ai(θi), we recover an essentially equivalent game where Ai is independent of θi.
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v

v
w1

w2

u2

u1

V

ε

Figure 4. Illustration of Theorem 4.1 for n = 2. The shaded area
is co(P(V )), which is contained in the limit set of PBE payoffs.
w1 and w2 are used to construct player-specific punishments.

4. The Main Result

Let P(V ) denote the (strong) Pareto frontier of V and let co(P(V )) denote

the convex hull of P(V ). Consider the set

co(P(V )) =
{
v ∈ co

(
P(V )

)
| vi > vi, i = 1, . . . , n

}
,

which consists of all vectors in co(P(V )) that are strictly above the stationary

minmax profile v = (v1, . . . , vn).

Definition 4.1. A vector v ∈ co(P(V )) allows player-specific punishments in

co(P(V )) if there exists a collection of payoff profiles
{
wi
}n
i=1
⊂ co(P(V )) such

that for all i,

vi > wii,

and for all j 6= i,

wji > wii.

The following is the main result of the paper.

Theorem 4.1. Let v ∈ co(P(V )) allow player-specific punishments in co(P(V )).

Then, for all ε > 0, there exists δ̄ < 1 such that for all δ > δ̄, there exists a perfect

Bayesian equilibrium where the expected continuation payoffs are within distance

ε of v at all on-path histories.

Theorem 4.1 provides sufficient conditions under which any payoff vector v that

is a convex combination of Pareto-efficient profiles in V and dominates the station-

ary minmax value v can be virtually attained in a perfect Bayesian equilibrium

of the dynamic game when players are patient. Furthermore, it shows that the
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equilibrium that approximates v can be taken to be stationary in the sense that

the continuation payoffs remain close to v at all on-path histories. In somewhat

more substantive terms, the theorem shows that long-term relationships can align

private and public incentives even in the presence of persistent asymmetric infor-

mation about payoffs provided that this information is renewed over time in the

sense of an irreducible process.

The equilibrium payoffs are supported by player-specific punishments similar to

those used in repeated games with complete information and perfect monitoring

(Fudenberg and Maskin, 1986). In such games the existence of the punishments is

guaranteed by the full-dimensionality of V , or more generally, the NEU condition

of Abreu, Dutta, and Smith (1994), both of which are satisfied generically. In

contrast, because of our proof strategy, we need the punishment profiles
{
wi
}n
i=1

to lie in (the individually rational part of) co(P(V )), which requires the Pareto

frontier of V to be rich enough. In particular, it suffices that co(P(V )) be at least

of dimension n−1. As we show below, this requirement turns out to be innocuous

for two-player games and is relatively mild in general.17

Heuristically, for a game to have a rich Pareto frontier requires some disagree-

ment among the players about the best course of action. The following lemma

makes this idea precise, and provides readily verifiable sufficient conditions for the

existence of player-specific punishments.

Definition 4.2. Let Fi = arg maxf∈AΘ Eπ[ui(f(θ), θi)] for i = 1, . . . , n.18 The

dynamic game has competing interests if for all distinct i and j,

Fi ∩ Fj = ∅.

It has competing interests with indifferent observers if it has competing interests

and for all distinct i, j, and k, and all f i ∈ Fi and f j ∈ Fj ,

Eπ[uk(f
i(θ), θk)] = Eπ[uk(f

j(θ), θk)].

Lemma 4.1. Assume either of the following conditions holds:

(C1) The game has competing interests and n ≤ 3; or

(C2) The game has competing interests with indifferent observers.

Let v ∈ co(P(V )) and ε > 0. Then, there exists v′ ∈ co(P(V )) within distance ε

of v that allows player-specific punishments in co(P(V )).

See Appendix A for the proof.

The notion of competing interests introduced above is a relatively mild one as

it only requires that for every pair of players, there is some type profile at which

17Although mild, dim co(P(V )) ≥ n− 1 is not a generic property as for any n, A, and Θ, there
is even an open set of stage games u ∈ RA×Θ where P(V ) is a singleton and dim co(P(V )) = 0.
18Since the maximization problem can be solved pointwise and π has full support (by irreducibility
and independence), the set Fi is independent of the distribution π.
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the players disagree about the most preferred action profile. For example, this is

readily verified to be the case in all of the examples introduced in Section 3.5 (save

for Example 3.2 where player 2’s payoffs were left unspecified). Furthermore, this

property is trivially satisfied in games with transferable utility such as the ones

studied in the literature on relational contracting (see, e.g., Levin, 2003). The

added restriction in games of competing interests with indifferent observers is

simply that each player k be indifferent between the most preferred choice rules

of any players i 6= k and j 6= k. Again, this is satisfied in all of the examples of

Section 3.5.19 These observations together with Theorem 4.1 and Lemma 4.1 yield

limit efficiency results for many important applications.

Lemma 4.1 allows us to dispense with player-specific punishments in two-player

games. To sketch the argument, let n = 2 and note that either the game has

competing interests so that every v ∈ co(P(V )) can be virtually achieved by

Lemma 4.1 and Theorem 4.1, or there exists an efficient choice rule f ∈ F1 ∩ F2

such that for all θ ∈ Θ, f(θ) simultaneously maximizes u1(a, θ1) and u2(a, θ2).

In the latter case P(V ) is a singleton, and there exists an essentially myopic

equilibrium where the players report truthfully and choose actions according to f .

Thus we obtain the following corollary, the proof of which is in Appendix A.

Corollary 4.1. Let n = 2. Then for all v ∈ co(P(V )) and all ε > 0, there exists

δ̄ < 1 such that for all δ > δ̄, there exists a perfect Bayesian equilibrium where the

expected continuation payoffs are within distance ε of v at all on-path histories.

Remark 4.1. The assumption about communication in every period cannot in

general be dispensed with without affecting the set of achievable payoffs. To see

this, it suffices to consider the Cournot game of Example 3.3 in the special case of

iid types. Without communication, the firms cannot coordinate to achieve payoffs

close to the collusive scheme where the firm with the lowest cost always produces

the monopoly output given its costs. In contrast, by Theorem 4.1 such payoffs can

be approximated arbitrarily closely when communication is allowed.

5. Credible Reporting Mechanisms

In this section we consider auxiliary games where there is a mechanism which

automatically implements a history-dependent action profile in each period so that

the game reduces to one where the players just send messages.

A (direct) T -period mechanism, T ∈ N∪{∞}, is a collection (f t)Tt=1 of decision

rules f t : Θt×[0, 1]t → A mapping histories of messages and public randomizations

into action profiles. Each mechanism induces a T -period reporting game that is

19In the Bertrand and Cournot games of Examples 3.1 and 3.3, this is true as long as the monopoly
profit of each firm i is positive for all cost realizations.
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obtained from the dynamic game defined in Subsection 3.2 by replacing stage t.4

with

t.4′ The mechanism implements f t(m1, ω1, . . . ,mt, ωt) ∈ A,

and truncating the game after period T . A strategy ρi for player i is simply the

restriction of some dynamic game strategy σi to the appropriate histories. Write

ρ∗i for the truthful strategy.20 We abuse terminology by using ‘mechanism’ to refer

both to a collection (f t)Tt=1 as well as to the game it induces.

In what follows we introduce the (class of) credible reporting mechanism(s), or

CRM for short. A CRM tests in every period whether each player’s past messages

are sufficiently likely to have resulted from truthful reporting. If a player fails the

test, then the mechanism ignores his messages from the next period onwards and

substitutes appropriately generated random messages for them. The CRM maps

current messages to actions according to some stationary decision rule.

Formally, given a sequence (x1, . . . , xt) ∈ Θt, let

τ(θ, θ′) =
∣∣{2 ≤ s ≤ t | (xs−1, xs) = (θ, θ′)

}∣∣
and

τi(θ, θ
′
−i) =

∑
θ′i

τ(θ, θ′)

for (θ, θ′) ∈ Θ×Θ and i = 1, . . . , n. Define the empirical frequency

P ti (θi, θ
′
i‖θ−i, θ′−i) =

τ(θ, θ′)

τi(θ, θ′−i)
,

where 0
0 = 0 by convention. A test is a non-negative null sequence (bk). We say

that player i passes the test (bk) at (x1, . . . , xt) if

(5.1) sup
θ′i

∣∣Pi(θi, θ′i)− P ti (θi, θ′i‖θ−i, θ′−i)∣∣ < bτi(θ,θ′−i) ∀(θ, θ′−i) ∈ Θ×Θ−i.

That is, i passes the test if and only if, for all (θ, θ′−i), the distribution of xsi
over periods s such that (xs−1, xs−i) = (θ, θ′−i) is within bτi(θ,θ′−i) of player i’s

true conditional distribution Pi(θi, ·) in the sup-norm.21 Note that if the sequence

(x1, . . . , xt) is generated by the true type process (λ, P ), then player i’s types over

the said periods are in fact iid draws from Pi(θi, ·) by the Strong Markov property

and Assumption 3.2. Since the left-hand side of (5.1) is the Kolmogorov-Smirnov

statistic for testing the hypothesis that the sample P ti (θi, ·‖θ−i, θ′−i) is generated

by independent draws from Pi(θi, ·), this implies that a test (bk) can be chosen

20I.e., ρ∗ti (θti | ht, (ht−1
i , θti)) = 1 for all t, ht ∈ Θt−1 × [0, 1]t−1 ×At−1, and (ht−1

i , θti) ∈ Ht
i .

21Our test is related to, but different from, standard statistical methods in Markov chains (see,
e.g., Amemiya, 1985, Chapter 11). Indeed, transition count is the maximum likelihood estimator
for a first-order Markov model. But our objective is unconventional as we want i to pass the
test given arbitrary strategies (and hence arbitrary processes) for −i as long as i’s transitions
converge to the truth and appear sufficiently independent from those of −i.
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such that under the true process (λ, P ) player i passes with probability arbitrarily

close to 1 even as t→∞.

A CRM is a triple (f, (bk), T ), where f : Θ → A is a decision rule, (bk) is a

test, and T < ∞ denotes the time horizon. Let ξ : Θ × [0, 1] → Θ be a function

such that if ω is drawn from the uniform distribution on [0, 1], then for all θ ∈ Θ,

ξ(θ, ω) is distributed on Θ according to P (θ, ·). The CRM (f, (bk), T ) implements

actions according to the following recursion:

For all 1 ≤ t ≤ T and every player i, put

xti =

mt
i if i passes (bk) at (x1, . . . , xs) for all 1 ≤ s < t,

ξi(x
t−1, ωt) otherwise,

and let at = f(xt).

Remark 5.1. We note for future reference that the above recursion implicitly de-

fines functions χ = (χt)Tt=1, χt : Θt × [0, 1]t → Θ, such that for all i and t,

xti = χti(m
1, . . . ,mt−1,mt

i, ω
1, . . . , ωt). A CRM is thus a mechanism (f t)Tt=1 where

f t = f ◦ χt.

The next lemma shows that there exists a test lenient enough for a truthful

player to be likely to pass it, yet stringent enough so that the empirical distribution

of (x1, . . . , xT ) converges to the invariant distribution π of the true type process

as T →∞ regardless of the players’ strategies.

Lemma 5.1. Let ε > 0. There exists a test (bk) satisfying the following conditions:

(1) In every CRM (f, (bk), T ), for all i, all ρ−i, and all λ,

Pρ∗i ,ρ−i [i passes (bk) at (x1, . . . , xt) for all t] ≥ 1− ε.

(2) ∃T̄ <∞ such that in every CRM (f, (bk), T ) with T > T̄ , for all ρ and all

λ, the empirical distribution of (x1, . . . , xT ), denoted πT , satisfies

Pρ[‖πT − π‖ < ε] ≥ 1− ε.

When all players are truthful (i.e., if ρ = ρ∗), the existence of the test can be

shown by using the convergence properties of Markov chains. The lemma extends

the result uniformly to arbitrary strategies. The proof, presented in Appendix

B, relies on the independence of transitions and our formulation of the test. In

particular, for player i to pass the test requires that (i) the marginal distribution

of his (reported) type transitions converges to the truth, and (ii) these transitions

appear sufficiently independent of the other players’ transitions (as the test is done

separately for each (θ, θ′−i)). If player i reports truthfully, (i) is immediate and

(ii) follows since, by independence, it is impossible for players −i to systematically

correlate their transitions with those of player i when the test conditions on the

previous period type profile. This explains the first part of the lemma.
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For the second part, suppose player i plays any strategy ρi. Then either he

passes the test in all periods, in which case (i) and (ii) follow by definition of the

test, or he fails in some period t, after which the CRM generates xsi , s > t, by

simulating the true type process for which (i) and (ii) follow by the argument in the

first part of the lemma. An accounting argument then establishes the convergence

of the long-run distribution of (x1, . . . , xT ).

We say that player i can truthfully secure v̄i in the CRM (f, (bk), T ) if

min
ρ−i

E(ρ∗i ,ρ−i)

[ 1− δ
1− δT

T∑
t=1

δt−1ui(f(xt), θti)
]
≥ v̄i,

where the expectation is with respect to the distribution induced by the strategy

profile (ρ∗i , ρ−i). That is, truthful reporting secures expected payoff v̄i to player

i if, regardless of the reporting strategies of the other players, player i’s expected

payoff from truthful reporting is at least v̄i.

For every v ∈ V p, take fv : Θ→ A such that v = Eπ[u(fv(θ), θ)]. Our interest

in the CRMs stems from the following security-payoff property:

Theorem 5.1. Let ε > 0. There exist a test (bk) and a time T̄ such that for all

T > T̄ , there exists a discount factor δ̄ < 1 such that for all v ∈ V p, all δ > δ̄,

and all λ, every player i can truthfully secure vi − ε in the CRM (fv, (bk), T ).

Since we have private values (Assumption 3.1), the result follows essentially

immediately from Lemma 5.1. See Appendix B for the proof.

Remark 5.2. By picking v on the Pareto frontier of V p, Theorem 5.1 implies the

existence of T -period CRMs whose all Nash equilibria (and hence any refinements

thereof) are approximately efficient if T is large and the players are sufficiently

patient. The proof consists of bounding payoffs from below by Theorem 5.1 and

from above by feasibility. (This also establishes that truthful reporting forms an

ε-equilibrium of the mechanism.) See the proof of Corollary 5.1 for an analogous

argument with an infinite horizon.

We now extend CRMs to an infinite horizon by constructing “block mecha-

nisms” in which the players repeatedly play randomly chosen T -period CRMs.

Let (φ, (bk, ), T ) denote a CRM where the decision rule f is determined by an

initial public randomization φ ∈ ∆(AΘ). For concreteness, we use the period-1

public randomization so that f = φ(·, ω1) for some φ : Θ× [0, 1]→ A.22

A block CRM (φ, (bk), T )∞ is an infinite-horizon mechanism where the random

CRM (φ, (bk), T ) is applied to each T -period block (k − 1)T + 1, . . . , kT , k ∈ N.

Note that, by construction, the action profile implemented by the mechanism

depends only on the messages and public randomizations in the current block.

22It is clear from the proof that the players not knowing which decision rule will be chosen before
sending their period-1 messages does not effect the security-payoff result of Theorem 5.1.
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A result of Fudenberg and Levine (1983, Theorem 6.1) implies that a sequential

equilibrium exists in a block CRM.23 Together with the following corollary to

Theorem 5.1 this shows that every payoff profile v which is a convex combination

of Pareto-efficient payoffs can be approximated by a block CRM where in every

sequential equilibrium, the continuation-payoff profile is close to v at all histories.

For every v ∈ V , take φv ∈ ∆(AΘ) such that v = EφvEπ[u(f(θ), θ)].

Corollary 5.1. Let ε > 0. There exist a test (bk), a time T , and a discount

factor δ̄ < 1 such that for all v ∈ co(P(V )), all δ > δ̄, and all λ, the expected

continuation payoffs are within distance ε of v at all histories in all sequential

equilibria of the block CRM (φv, (bk), T )∞.

The proof, presented in Appendix B, proceeds by applying the security-payoff

result of Theorem 5.1 to each block to bound equilibrium payoffs from below, and

then using feasibility to bound them from above. In particular, the lower bound

follows from observing that at any history each player can revert to truthful report-

ing for the rest of the game which guarantees the security payoff from all future

blocks. Given sufficiently little discounting, this is essentially all that matters for

continuation payoffs. While characterizing actual equilibrium behavior would be

difficult, we note in passing that truthful reporting forms an ε-equilibrium.

6. Constructing Game Equilibria

In this section we finally construct game equilibria to deduce Theorem 4.1.

To this end, let v ∈ co(P(V )) allow player-specific punishments in co(P(V )).

Without loss of generality, take ε > 0 small enough so that there exist vectors

w1, . . . , wn ∈ co(P(V )) such that for all i,

vi > wii + 2ε,

and for all j 6= i,

wji > wii + 2ε.

(See Figure 4.) Assume further that ε > 0 is small enough so that there exists

γ ∈]0, 1[ such that for all i 6= j,

(6.1) γ >
2ε

wii − vi
and

(6.2) γ
(
vj + ε

)
+ (1− γ)

(
wjj − w

i
j + 2ε

)
< 0.

23Fudenberg and Levine (1983) assume that all players including Nature have finitely many
actions at each stage whereas we have a continuous public randomization in each period. However,
the range of ξ is finite, and hence a finite randomization device suffices for any given CRM. Since
block CRMs employ only finitely many CRMs, the same holds for them. An equilibrium of such
a coarsened game remains an equilibrium in the game with a continuous randomization device.
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Corollary 5.1 yields block CRMs (φ0, (bk), T )∞, (φ1, (bk), T )∞, . . . , (φn, (bk), T )∞

and δ0 < 1 such that for all δ > δ0, the expected continuation payoffs are within

distance ε of the corresponding target payoffs v, w1, . . . , wn at all histories in all

sequential equilibria.

Before turning to the construction of the equilibrium strategies, we introduce

an auxiliary dynamic mechanism used to construct off-path punishments.

6.1. The Punishment Mechanism. For each player i take a minmaxing profile

ai−i ∈ arg min
a−i∈A−i

{
max
ai∈Ai

Eπi [ui(a, θi)]
}
.

Given L ∈ N and the block CRM (φi, (bk), T )∞, we construct an auxiliary game

(L, (φi, (bk), T )∞) that runs over t = 1, 2, . . . as follows. At each t ∈ {1, . . . , L},
the game proceeds exactly as the dynamic game defined in Section 3.2, except

that every player j 6= i is forced to take the action atj = aij . At t = L + 1, the

block CRM (φi, (bk), T )∞ starts and runs over all subsequent periods. (Note that

the construction of the block mechanism starting at L+1 does not depend on how

play transpires during the first L periods.) The evolution of types in the game

(L, (φi, (bk), T )∞) is identical to that in the dynamic game. However, it will be

useful to have separate notation for the initial distribution of types, which will be

denoted B ∈ ∆(Θ) with B(θ) =
∏n
i=1Bi(θi).

We refer to the game (L, (φi, (bk), T )∞) defined above as the punishment mecha-

nism against i. It starts with players j 6= i being restricted to minmax player i for

L periods while player i can best respond with any actions ati ∈ Ai, t = 1, . . . , L.

The block CRM (φi, (bk), T )∞ then ensues. For reasons that will become clear in

the proof, we choose L as

L = L(δ) = max
{
n ∈ N | n ≤ ln(1− γ)

ln(δ)

}
.

Note that as δ → 1, we have L(δ)→∞ and δL(δ) → 1− γ.

The following result provides bounds on the players’ equilibrium payoffs in the

punishment mechanism against i.

Lemma 6.1. There exists δ1 ≥ δ0 such that the following hold:

(1) For all i, all δ > δ1, all initial beliefs B, and all sequential equilibria of

the punishment mechanism (L(δ), (φi, (bk), T )∞), the expected continua-

tion payoffs are within distance ε of wi at all period-t histories for t > L(δ).

(2) For all i, all δ > δ1, and all θi ∈ Θi,

1− δ
1− δL(δ)

L(δ)∑
t=1

δt−1E
[

max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θ1

i = θi
]
≤ vi + ε.

The proof is presented in Appendix C. The first part follows immediately

from the fact that in periods t > L(δ) the players are playing the block CRM
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(φi, (bk), T )∞. To interpret the second part, observe that the left-hand side is an

upper bound on player i’s discounted average payoff from the periods in which he

is being minmaxed (i.e., from the first L(δ) periods of (L(δ), (φi, (bk), T )∞)) given

initial type θi.

The existence of a sequential equilibrium follows by Fudenberg and Levine

(1983, Theorem 6.1).

6.2. Phases and Equilibrium Strategies. An equilibrium yielding continua-

tion payoffs within ε of v can now be informally described as follows (see Ap-

pendix D for a formal description of the equilibrium strategies and beliefs). The

equilibrium starts in the cooperative phase where play mimics an equilibrium of

the block CRM (φ0, (bk), T )∞. That is, the players send messages according to the

equilibrium of the mechanism and play the action profile the mechanism would

have chosen given the history of messages and public randomizations. As long as

there has never been a period where some player deviated from the action pre-

scribed by the mechanism, play remains in the cooperative phase. This is the case

everywhere on the equilibrium path.

A deviation by player i from the prescribed action in the cooperative phase

triggers the punishment phase against i where play mimics an equilibrium of the

punishment mechanism (L, (φi, (bk), T )∞). This consists of the stick subphase—in

which the deviator i is minmaxed for L periods—followed by the carrot subphase,

which builds on the block CRM (φi, (bk), T )∞. In the stick subphase, all players

send messages and player i chooses actions as in the equilibrium of the punishment

mechanism, and players −i play the minmax profile prescribed by the mechanism.

In the carrot subphase, the players continue to send messages according to the

equilibrium, and all players play the action profile prescribed by the mechanism.

As long as there has never been a period where a player deviated from the ac-

tion prescribed by the punishment mechanism (either some player k 6= i during

the stick, or any player during the carrot), play remains in the punishment phase

against i. A deviation by player j from the prescribed action triggers the punish-

ment phase against j.

Within each phase beliefs evolve as in the equilibrium being mimicked. If some

player i triggers a change of phase by deviating from the action prescribed by the

mechanism, then the initial beliefs for the punishment mechanism against i are

determined by the current public beliefs about the players’ types in the period

where the deviation occurred.24

24More precisely, if the punishment phase against i starts in period t, then the initial beliefs in
the punishment mechanism against i are given by the current public beliefs over the entire private
histories Θt. However, the continuation equilibrium of the punishment mechanism depends only
on the beliefs about the period-t type profile.
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Remark 6.1. It is worth emphasizing that a change in phase is triggered only when

a player deviates from the action prescribed by the mechanism. A player may also

deviate from the equilibrium of the mechanism by sending a different message,

and this deviation may be observable (e.g., suppose that the equilibrium of the

mechanism has the player reporting truthfully, and type transitions do not have

full support). Similarly, the punishment mechanism against i does not prescribe

actions for player i when he is being minmaxed so that he may have an observ-

able deviation there. However, both of these deviations result in a history which

is feasible in the mechanism, and therefore the equilibrium that is being mim-

icked prescribes some continuation strategies and beliefs following the deviation.

Accordingly, we assume that the players simply continue to mimic the equilibrium.

As the strategies described above have the players mimic an equilibrium of the

block CRM (φ0, (bk), T )∞ on the path of play, they result in continuation payoffs

that are within distance ε of v after all on-path histories by Corollary 5.1. Thus

to complete the proof of Theorem 4.1, it suffices to show that the strategies are

sequentially rational. To this end, note that within each phase play corresponds

to an equilibrium of some mechanism, and hence deviations that do not lead to

a change of phase are unprofitable a priori. Therefore, it is enough to verify that

at every history, no player gains by triggering a change of phase by deviating in

action.25 We do this by showing that there exists δ̄ < 1 such that, regardless of the

history, triggering a change of phase cannot be optimal for a player when δ > δ̄.

Cooperative-phase histories: Suppose play is in the cooperative phase. Then

player j’s expected continuation payoff is at least vj − ε. A one-stage deviation

in action triggers the punishment phase against j and, by Lemma 6.1, for δ ≥ δ1

yields at most

(1− δ) + (δ − δL(δ)+1)(vj + ε) + δL(δ)+1(wjj + ε) ≤ (1− δ) + δ(wjj + ε).

At δ = 1, the right-hand side is strictly less than vj − ε. Therefore, we can find

δ2 ≥ δ1 such that for all δ > δ2 the deviation is unprofitable.

Stick-subphase histories: Consider a history at which player i should be min-

maxed. It is enough to show that, for j 6= i, it is in player j’s interest to choose

aij (see Remark 6.1). By conforming, j’s payoff is at least δL(δ)(wij − ε), whereas a

one-stage deviation in action triggers the punishment phase against j. By Lemma

6.1, for δ ≥ δ1 the incentive constraint takes the form

(1− δ) + (δ − δL(δ)+1)(vj + ε) + δL(δ)+1(wjj + ε) ≤ δL(δ)(wij − ε).

25Note that such deviations include “double deviations,” where a player first deviates within a
phase, and only then deviates in a way that triggers the punishment.
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As δ → 1, the inequality becomes γ(vj + ε) + (1 − γ)(wjj − wij + 2ε) ≤ 0, which

holds strictly by (6.2). Thus, there exists δ3 ≥ δ2 such that for all δ > δ3, the

deviation is unprofitable.

Carrot-subphase histories: Suppose play is in the carrot subphase of the pun-

ishment phase against i. Then player j’s continuation payoff is at least wij − ε. A

one-stage deviation in action triggers the punishment phase against j and we use

Lemma 6.1 to write the incentive constraint preventing the deviation for δ ≥ δ1 as

(1− δ) + (δ − δL+1)(vj + ε) + δL+1(wjj + ε) ≤ wij − ε.

As δ → 1, the inequality becomes γ(vj +ε)+(1−γ)(wjj +ε) ≤ wij−ε. It is enough

to check this inequality when j = i since wij > wjj for j 6= i. But by our choice of

γ and ε, (6.1) holds for all j and hence the limit incentive constraint holds with

strict inequality. We conclude that there exists δ4 ≥ δ3 such that for all δ > δ4,

the deviation is unprofitable.

Put δ̄ = δ4. Then all one-stage deviations that trigger a change of phase

are unprofitable for all δ > δ̄, and hence the strategies are sequentially rational.

Theorem 4.1 follows.

7. Concluding Remarks

Our main result (Theorem 4.1) shows that repeated interaction may allow in-

dividuals to overcome the problems of self-interested behavior and asymmetric

information even if private information is persistent. The proof suggests that,

given enough patience, approximately efficient cooperation can be supported with

behavior that amounts to a form of mental accounting: If the history of a player’s

reports about his private state appears credible when evaluated against the re-

ports of others and the knowledge about the evolution of uncertainty, then that

player’s reports are taken at face value when deciding on actions. If a player loses

credibility, which may happen with some probability, then his reports no longer

matter for the choice of actions. However, as long as the player complies with the

chosen actions, this is his only punishment, and he will regain credibility after a

while. It is only in the event of a deviation in actions that a harsher punishment

is used, but this event is off the equilibrium path.

There are various directions in which the robustness of the result could be

explored:

We assume that the process governing the evolution of types is autonomous.

Extending the results to decision-controlled processes studied in the literature

on stochastic games (see, e.g., Dutta, 1995, and the references therein) appears

feasible but notationally involved.
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The main restrictions we impose on the players’ information are private values

(Assumption 3.1), irreducibility (Assumption 3.3), and independence across play-

ers (Assumption 3.2). As mentioned in the Introduction, there are games with

perfectly persistent types where the limit equilibrium payoff set is bounded away

from efficiency. Thus irreducibility is essentially necessary for general efficiency

results.

For the other two, note that when valuations are interdependent (sometimes re-

ferred to as common values), efficiency need not be achievable even with transfers

(see Jehiel and Moldovanu, 2001). Thus extending our results to this case neces-

sitates additional assumptions about how information affects the players’ payoffs.

In contrast, going from independent to correlated types expands the set of im-

plementable outcomes in a mechanism design setting (see Cremer and McLean,

1988). This leads us to conjecture that the result extends to the case of correlated

transitions even if our proof does not.26

Appendix A. Proofs for Section 4

Proof of Lemma 4.1. For each i, take vi ∈P(V ) such that vii = max{ui | u ∈ V }.
Since the game has competing interests, vii > vji for all j 6= i. Moreover, the

vectors (vi)ni=1 are affinely independent. Indeed, for j = 2, . . . , n, consider the

vector uj = vj − v1 and note that uj1 < 0, ujj > 0 and for i 6= j ujj > uij .

When n ≤ 3 or when the game has conflicting interests with indifferent observers

(and therefore uij = 0 for i 6= j), these conditions imply that (uj)nj=2 are linearly

independent and therefore (vi)ni=1 are affinely independent. Thus the dimension

of the convex set co(
{
v1, . . . , vn

}
) ⊂ co(P(V )) equals n− 1. It then follows that

the dimension of co(P(V )) is at least n− 1.

Suppose first that the dimension of co(P(V )) equals n. Take v′ in the interior

of co(P(V )) which is within distance ε > 0 of the target payoff v ∈ co(P(V )).

Such v′ can always be found because the (relative) interior of a closed convex set

is a dense subset of that set (Theorem 6.3 in Rockafellar, 1970). Take now v̄ in

the interior of co(P(V )) such that v̄i < v′i for all i. For ε′ > 0 define wi ∈ Rn

as wii = v̄i and wij = v̄j + ε′ for i 6= j ; take ε′ > 0 small enough such that

wi ∈ co(P(V )) for all i. It is then clear that v′ allows player-specific punishments

in co(P(V )).

Consider now the case in which co(P(V )) has dimension n− 1. Let H = {u ∈
Rn | β · u = α} be the affine hull of co(P(V )), where without loss we assume

that β ∈ Rn+ \ {0}. Moreover, under either condition in the lemma, β ∈ Rn++. As

we did in the paragraph above, take v′ in the relative interior of co(P(V ) which

is within distance ε of v. Therefore, there exists an open ball B centered at v′

26Our proof does extend to the case where the correlation is due to a public Markov state but
transitions are independent conditional on the state.
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such that B ∩ H ⊂ co(P(V ). Choose now wi ∈ B ∩ H with wij > vj for i 6= j

and therefore wii < vi. It then follows that v′ allows player-specific punishments

in co(P(V )). �

Proof of Corollary 4.1. Let n = 2. If the game has competing interests, then the

result immediately follows. So suppose instead that there exists a decision rule

f : Θ→ A such that for all θ ∈ Θ and all i,

f(θ) ∈ arg max
{
ui(a, θi) | a ∈ A

}
.

Consider the following pure strategy for player i. For all ht ∈ Ht and hti ∈ Θt
i, if

ht = (m1, ω1, a1, . . . ,mt−1, ωt−1, at−1), then

σti(h
t, hti) = θti ,

whereas if ht = (m1, ω1, a1, . . . ,mt−1, ωt−1, at−1,mt, ωt), then

σti(h
t, hti)

= fi(m
t) if mt

i = θti ,

∈ arg max{ui(ai, f−i(mt), θti) | ai ∈ Ai} otherwise.

At any public history, the belief µi about player i puts probability 1 to the private

history that coincides with the history of i’s messages. To verify that strategies

are sequentially rational, observe that for any t ≥ 1, continuation play from period

t+ 1 onward does not depend on the outcome in period t. Thus, a player cannot

gain by deviating in messages as truthful messages maximize his current payoff.

Following (truthful or non-truthful) reports in period t, a player cannot gain by

choosing a different action either as the equilibrium action maximizes his current

payoff given his type. The corollary now follows by noting that the expected payoff

converges to Eπ[u(f(θ), θ)] as δ → 1 (uniformly in λ). �

Appendix B. Proofs for Section 5

B.1. Preliminaries. We state and prove two convergence results that are used in

the proof of Lemma 5.1. The first is a corollary of Massart’s (1990) result about

the rate of converge in the Glivenko-Cantelli theorem. Throughout ‖·‖ denotes

the sup-norm.

Lemma B.1. Let Θ be a finite set, and let g ∈ ∆(Θ). Given an infinite sequence of

independent draws from g, let gk denote the empirical measure obtained by observ-

ing the first k draws. (I.e., for all k ∈ N and all θ ∈ Θ, gk(θ) = 1
k

∑k
t=1 1{θt=θ}.)

Fix α > 0 and define a null sequence (bk)k∈N by

bk =

√
2

k
log

π2k2

3α
.

Then

P[∀k ∈ N ‖gk − g‖ ≤ bk] ≥ 1− α.
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Proof. Without loss we may label the elements of Θ from 1 to |Θ|. Define the

cdf G from g by setting G(l) =
∑l

j=1 g(j). The empirical cdf’s Gk are defined

analogously from gk. For all k, all l,

|gk(l)− g(l)| ≤ |Gk(l)−G(l)|+ |Gk(l − 1)−G(l − 1)|,

so that ‖gk− g‖ ≤ 2‖Gk−G‖. Defining the events Bk =
{
‖gk − g‖ ≤ bk

}
we then

have
{
‖Gk −G‖ ≤ bk

2

}
⊂ Bk. Thus,

P[Bk] ≥ P[‖Gk −G‖ ≤ bk
2

] ≥ 1− 2e−2k(
bk
2

)2
= 1− 6α

π2k2
,

where the second inequality is by Massart (1990) and the equality is by definition

of bk. The lemma now follows by observing that

P[
⋂
k∈N

Bk] = 1− P[
⋃
k∈N

BC
k ] ≥ 1−

∑
k∈N

P [BC
k ] ≥ 1−

∑
k∈N

6α

π2k2
= 1− α,

where the last equality follows since
∑∞

k=1
1
k2 = π2

6 . �

Lemma B.2. Let P be an irreducible stochastic matrix on a finite set Θ, and let

π denote the unique invariant distribution for P . Let (θt)t∈N be a sequence in Θ.

For all t, define the empirical matrix P t by setting

P t(θ, θ′) =
|{s ∈ {1, . . . , t− 1} : (θs, θs+1) = (θ, θ′)}|

|{s ∈ {1, . . . , t− 1} : θs = θ}|
,

and define the empirical distribution πt by setting

πtθ =
|{s ∈ {1, . . . , t} : θs = θ}|

t
.

For all ε > 0 there exists T <∞ and η > 0 such that for all t ≥ T ,

‖P t − P‖ < η ⇒ ‖πt − π‖ < ε.

P t is an empirical transition matrix that records for each state θ the empirical

conditional frequencies of transitions θ → θ′ in (θs)ts=1. Similarly, πt is an empiri-

cal measure that records the frequencies of states in (θs)ts=1. So the lemma states

roughly that if the conditional transition frequencies converge to those in P , then

the empirical distribution converges to the invariant distribution for P .

Proof. Fix θ′ ∈ Θ and t ∈ N. Note that tπtθ′ is the number of visits to θ′ in (θs)ts=1.

Since each visit to θ′ is either in period 1 or preceded by some state θ, we have

tπtθ′ ≤ 1 +
∑
θ∈Θ

|{s < t : θs = θ}|P t(θ, θ′) ≤ |Θ|+
∑
θ∈Θ

tπtθP
t(θ, θ′).

On the other hand,

tπtθ′ ≥
∑
θ∈Θ

|{s < t : θs = θ}|P t(θ, θ′) ≥
∑
θ∈Θ

tπtθP
t(θ, θ′)− |Θ|,
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where the second inequality follows, since |{s < t : θs = θ}| ≥ tπtθ − 1 and∑
θ P

t(θ, θ′) ≤ |Θ|. Putting together the above inequalities gives

−|Θ|
t
≤ πtθ′ −

∑
θ∈Θ

πtθP
t(θ, θ′) ≤ |Θ|

t
.

Since θ′ was arbitrary, we have in vector notation

−|Θ|
t

1 ≤ πt(I − P t) ≤ |Θ|
t

1,

where I is the identity matrix and 1 denotes a |Θ|-vector of ones. This implies

that for all t, there exists et ∈ R|Θ| such that ‖et‖ ≤ |Θ|t and πt(I − P t) = et. Let

E be a |Θ| × |Θ|-matrix of ones. Then

πt(I − P t + E) = 1 + et and π(I − P + E) = 1.

It is straightforward to verify that the matrix I − P + E is invertible when P is

irreducible (see, e.g., Norris, 1997, Exercise 1.7.5). The set of invertible matrices

is open, so there exists η1 > 0 such that I −P t +E is invertible if ‖P t−P‖ < η1.

Furthermore, the mapping Q 7→ (I −Q+E)−1 is continuous at P , so there exists

η2 > 0 such that ‖(I − P t +E)−1 − (I − P +E)−1‖ < ε
4|Θ| if ‖P t − P‖ < η2. Put

η = min {η1, η2} and put

T =
2|Θ|2‖(I − P + E)−1‖

ε
.

If t ≥ T and ‖P t − P‖ < η, then

‖πt − π‖ = ‖(1 + et)(I − P t + E)−1 − 1(I − P + E)−1‖

≤ ‖(1 + et)[(I − P t + E)−1 − (I − P + E)−1]‖+ ‖et(I − P + E)−1‖

≤ 2|Θ|‖(I − P t + E)−1 − (I − P + E)−1‖+
|Θ|2

t
‖(I − P + E)−1‖

≤ ε

2
+
ε

2
.

The lemma follows. �

B.2. Proof of Lemma 5.1. Fix ε > 0 once and for all. Motivated by Lemma B.1,

define the test (bk) by

(B.1) bk =

√
2

k
log

π2k2 |Θ|2 n
3ε

.

We claim that (bk) satisfies conditions (1) and (2) of Lemma 5.1.27

Consider first condition (1). Fix T , i, λ, and ρ−i. It is without loss to assume

that λ is degenerate and ρ−i is a pure strategy profile as the general case then

27The exact formula for (bk) is unimportant. It suffices to have any test (bk) such that for all
probability measures g with finite support, P[∀k ∈ N ‖gk−g‖ ≤ bk] ≥ 1− ε

|Θ|2n , where gk denotes

the empirical measure of the first k observations of an infinite sequence of iid draws from g.
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follows by taking expectations. Similarly, it obviously suffices to show the claim

conditional on an arbitrary realization (θt−i, ω
t)Tt=1. To this end, note that by As-

sumption 3.2, for any degenerate λ, the Markov chain (λi, Pi) is a version of the

conditional distribution of (θti)
T
t=1 given (θt−i, ω

t)Tt=1. Furthermore, for a fixed re-

alization (θt−i, ω
t)Tt=1, the vectors xt−i (t = 1, . . . , T ) are generated as deterministic

functions of i’s truthful messages according to some “pure strategy” r = (rt)Tt=1,

rt : Θt−1
i → Θ−i, induced by ρ−i and χ, where χ is the mapping defined in Remark

5.1. Thus it suffices to establish the following:

Lemma B.3. For all r = (rt)Tt=1, rt : Θt−1
i → Θ−i, if θti follows (λi, Pi) and

xt−i = rt(θ1
i , . . . , θ

t−1
i ), then

P[i passes (bk) at ((θ1
i , x

1
−i), . . . , (θ

t
i , x

t
−i)) for all t] ≥ 1− ε

n
.

Proof. We start by introducing a collection of auxiliary random variables, which

are used to generate player i’s types. (The construction that follows is inspired by

Billingsley, 1961.) Let ([0, 1],B, P̂) be a probability space. On this space define a

countably infinite collection of independent random variables

ψ̃sθ,θ′−i
: [0, 1]→ Θi, (θ, θ′−i) ∈ Θ×Θ−i, s ∈ N,

where

P̂[ψ̃s(θi,θ−i),θ′−i
= θ′i] = Pi(θi, θ

′
i).

That is, for any fixed θ = (θi, θ−i) and θ′−i, the variables ψ̃sθ,θ′−i
, s = 1, 2, . . ., form

a sequence of iid draws from Pi(θi, ·).
Given any r = (rt)Tt=1, we generate the path (θti , x

t
−i)

T
t=1 of player i’s types

(which equal his messages) and the vectors xt−i ∈ Θ−i recursively as follows:

(θ1
i , x

1
−i) is a constant given by the degenerate initial distribution λi and r1. For

1 < t ≤ T , suppose (θτi , x
τ
−i)

t−1
τ=1 have been generated. Then let

xt−i = rt(θ1
i , · · · , θt−1

i ) and θti = ψτ
((θt−1

i ,xt−1
−i ),xt−i)

,

where τ =
∣∣{2 ≤ s ≤ t | ((θs−1

i , xs−1
−i ), xs−i) = ((θt−1

i , xt−1
−i ), xt−i)

}∣∣. That is, rt de-

termines xt−i, and then θti is found by sampling the first unsampled element in the

sequence (ψs
((θt−1

i ,xt−1
−i ),xt−i)

)s∈N.28

Denote by Eθ,θ′−i ∈ B the event where, for all k ∈ N, the empirical distri-

bution of the first k variables in the sequence (ψ̃s(θ,θ′−i)
)s∈N is within bk of the

true distribution Pi(θi, ·) in the sup-norm, where bk is defined by (B.1). Let

28To see that this generates the right process, fix a path (θti , x
t
−i)

T
t=1. It has positive probability

only if xt−i = rt(θ1
i , . . . , θ

t−1
i ) for all t, in which case its probability under (λi, Pi) is simply

λi(θ
1
i )Pi(θ

1
i , θ

2
i ) · · ·Pi(θT−1

i , θTi ).

On the other hand, our auxiliary construction assigns it probability

λi(θ
1
i )P̂[ψ̃1

(θ1i ,x
1
−i),x

2
−i

= θ2
i ] · · · P̂[ψ̃τ

(θT−1
i ,xT−1

−i ),xT−i
= θTi ],
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E =
⋂
θ∈Θ

⋂
θ′−i∈Θ−i

Eθ,θ′−i . Lemma B.1 implies that P̂(Eθ,θ′−i) ≥ 1 − ε
|Θ|2n for all

θ, θ′−i, and hence P̂(E) ≥ 1− ε
n .

To complete the proof, note that conditional on E, player i passes the test (bk)

at ((θ1
i , x

1
−i), . . . , (θ

t
i , x

t
−i)) for all t = 1, . . . , T . Indeed, by construction, for all t

and all (θ, θ′−i) ∈ Θ × Θ−i, P
t
i (θi, ·‖θ−i, θ′−i) is the empirical distribution of the

first k variables in the sequence (ψ̃s(θ,θ′−i)
)s∈N for some k ∈ N. But conditional on

E, this distribution is within bk of Pi(θi, ·) by definition of E. �

Having established condition (1) of Lemma 5.1, we now turn to condition (2).

By Lemma B.2, it suffices to show that (bk) defined by (B.1) satisfies the following:

(2′) For all η > 0, there exists T̄ <∞ such that in every CRM (f, (bk), T ) with

T > T̄ , for all ρ and all λ,

Pρ[
∥∥P T − P∥∥ < η] ≥ 1− ε,

where P T is the empirical matrix defined for each (x1, . . . , xT ) ∈ ΘT by

P T (θ, θ′) =
|{s ∈ {1, . . . , T − 1} : (xs, xs+1) = (θ, θ′)}|

|{s ∈ {1, . . . , T − 1} : xs = θ}|
.

It is useful to define the decreasing sequence (ck) from (bk) by

ck = 2 max
1≤j≤k

j

k
bj +

1

k
.

Note that (ck) is a test: clearly ck ≥ bk > 0 for all k, whereas ck → 0 follows by

the following observation, stated as a lemma for future reference:

Lemma B.4. For every test (dk), limk→∞max1≤j≤k
j
kdj = 0.

Proof. If maxk dk = 0, we are done. Otherwise, let η > 0 and put α = η
maxk dk

.

Take k̄ such that dk < η for all k ≥ αk̄. Let jk be a maximizer for k. Then for

any k ≥ k̄ we have jk
k djk ≤ min{djk ,

jk
k maxk dk} < η, where the second inequality

follows by noting that if jkk maxk dk ≥ η, then jk ≥ αk ≥ αk̄, and thus djk < η. �

Lemma B.5. In every CRM (f, (bk), T ), for all ρ and λ,

Pρ[every i passes (ck) at (x1, . . . , xT )] ≥ 1− ε.

That is, the sequence (x1, . . . , xT ), which the mechanism uses to determine

actions, has every player i passing the relaxed test (ck) at the end of the CRM

with high probability irrespective of the players’ strategies. (The formula for (ck)

is of little interest. In what follows we only use uniformity in ρ.)

where τ = |{2 ≤ s ≤ T | ((θs−1
i , xs−1

−i ), xs−i) = ((θT−1
i , xT−1

−i ), xT−i)}|, and where we have used

independence of the ψ̃sθ,θ′−i
to write the joint probability as a product. But by construction,

P̂[ψ̃1
(θ1i ,x

1
−i),x

2
−i

= θ2
i ] = Pi(θ

1
i , θ

2
i ) and P̂[ψ̃τ

(θT−1
i ,xT−1

−i ),xT−i
= θTi ] = Pi(θ

T−1
i , θTi ),

(and similarly for elements not written out) so both methods assign the path the same probability.
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Proof. Fix a CRM (f, (bk), T ), ρ, λ, and i. Let 1 < τ < T and consider a his-

tory where player i fails the test (bk) at (x1, . . . , xτ ). The CRM then generates

xτ+1
i , . . . , xTi by simulating i’s true type process. Thus continuation play is iso-

morphic to a situation where i reports the rest of his types truthfully. Hence

Lemma B.3 implies that, conditional on failing (bk) at (x1, . . . , xτ ), i passes (bk)

at (xτ+1, . . . , xT ) with probability at least 1 − ε
n . In this event, for any (θ, θ′−i),

we can decompose the empirical frequency of xti’s as

P Ti (θi, ·‖θ−i, θ′−i) =
k1

k
Φ1 +

k2

k
Φ2 +

k − k1 − k2

k
Φ3,

where

• k1 = τi(θ, θ
′
−i) for (x1, . . . , xτ−1) and Φ1 = P τ−1

i (θi, ·‖θ−i, θ′−i),
• k2 = τi(θ, θ

′
−i) for (xτ+1, . . . , xT ) and Φ2 is the corresponding empirical

frequency,

• Φ3 is the empirical frequency of i’s reports in period τ ,

• k = k1 + k2 + 1 iff (xτ−1, xτ−i) = (θ, θ′−i); otherwise k = k1 + k2.

By definition of the Φi’s we then have∥∥P Ti (θi, ·‖θ−i, θ′−i)− Pi(θi, ·)
∥∥

≤ k1

k
‖Φ1 − Pi(θi, ·)‖+

k2

k
‖Φ2 − Pi(θi, ·)‖+

k − k1 − k2

k
‖Φ3 − Pi(θi, ·)‖

≤ k1

k
bk1 +

k2

k
bk2 +

1

k
≤ ck.

We conclude that conditional on failing (bk) at some (x1, . . . , xτ ), i passes (ck) at

(x1, . . . , xT ) with probability at least 1− ε
n . On the other hand, if i never fails (bk),

he passes (ck) a priori as ck ≥ bk. Thus Pρ[i passes (ck) at (x1, . . . , xT )] ≥ 1− ε
n ,

which implies the result. �

For all T ∈ N, let

ΞT =
{

(x1, . . . , xT ) ∈ ΘT | every i passes (ck) at (x1, . . . , xT )
}
.

By Lemma B.5 the set ΞT has the desired probability given any ρ and λ. Hence

for condition (2′) it suffices to establish that for every sequence of sequences

(x1, . . . , xT ) ∈ ΞT , T ∈ N, we have P T → P , and that the rate of convergence is

uniform across all such sequences. As the first step in this accounting exercise,

the next lemma shows that all transitions that have positive probability under the

true process appear infinitely often in (x1, . . . , xT ) ∈ ΞT as T →∞.

Lemma B.6. There exists a map κ : N → R with κ(T ) → ∞ such that for all

(x1, . . . , xT ) ∈ ΞT , T ∈ N, and all (θ, θ′) ∈ Θ2, if P (θ, θ′) > 0, then

τ(θ, θ′) ≥ κ(T ).
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Proof. Let p = min
{
Pi(θi, θ

′
i) | Pi(θi, θ′i) > 0, (θi, θ

′
i) ∈ Θ2

i , i = 1, . . . , n
}

. We ig-

nore integer constraints throughout the proof to simplify notation.

Claim B.1. Let (x1, . . . , xT ) ∈ ΞT , T ∈ N, and (θ, θ′) ∈ Θ2. If τ(θ, θ′) ≥ k, then

for all i and all θ′′i ∈ suppPi(θi, ·),

τ(θ, (θ′′i , θ
′
−i)) ≥ k(p− ck).

Proof of Claim. Since (x1, . . . , xT ) ∈ ΞT , we have∣∣P Ti (θi, θ
′′
i ‖θ−i, θ′−i)− Pi(θi, θ′′i )

∣∣ < cτi(θ,θ′−i) ≤ cτ(θ,θ′) ≤ ck.

Thus

τ(θ, (θ′′i , θ
′
−i)) = τi(θ, θ

′
−i)P

T
i (θi, θ

′′
i ‖θ−i, θ′−i) ≥ k(Pi(θi, θ

′′
i )− ck) ≥ k(p− ck),

proving the Claim. �

Now fix (x1, . . . , xT ) ∈ ΞT . There exists (θ0, θ) ∈ Θ2 such that

τ(θ0, θ) ≥ T − 1

|Θ2|
≥

T
|Θ| − 1

|Θ|
=: k1

0.

We claim that for all θ1 ∈ suppP (θ0, ·), we have τ(θ0, θ1) ≥ k1
n, where k1

n is

determined from k1
0 by setting l = 1 in the recursion

(B.2) kli = kli−1(p− ckli−1
), i = 1, . . . , n.

Indeed, any θ1 ∈ suppP (θ0, ·) can be obtained from θ in n steps through the chain

(θ1, . . . , θn), (θ1
1, θ2, . . . , θn), (θ1

1, θ
1
2, θ3, . . . , θn), . . . , (θ1

1, . . . , θ
1
n),

where θ1
i ∈ suppPi(θ0

i , ·) for all i. Hence the bound follows by applying Claim B.2

n times.

We note then that for every θ1 ∈ suppP (θ0, ·), there exists θ ∈ Θ such that

τ(θ1, θ) ≥ k1
n − 1

|Θ|
=: k2

0.

Thus applying Claim B.2 again n times allows us to deduce that τ(θ1, θ2) ≥ k2
n for

all θ2 ∈ suppP (θ1, ·), where k2
n is determined from k2

0 by setting l = 2 in (B.2).

We observe that k2
n < k1

n.

Continuing in this manner defines a decreasing sequence (k1
n, k

2
n, . . . , k

l
n, . . . )

such that for each l, kln is given by the n-step recursion (B.2) with initial condition

(B.3) kl0 =
kl−1
n − 1

|Θ|
, k0

n =
T

|Θ|
.

By construction, for any sequence (θ0, θ1, . . . , θL) such that
∏L
l=1 P (θl−1, θl) > 0,

we have τ(θl−1, θl) ≥ kln ≥ kLn for all l. Since P is irreducible, there exists L <∞
such that every pair (θ′, θ′′) ∈ Θ2 with P (θ′, θ′′) > 0 is along some such sequence



32 ESCOBAR AND TOIKKA

starting from any θ0. For this L we have τ(θ′, θ′′) ≥ kLn for all (θ′, θ′′) ∈ Θ2 such

that P (θ′, θ′′) > 0. Furthermore, the bound kLn is independent of (x1, . . . , xT ) by

inspection of (B.2) and (B.3).

It remains to argue that kLn →∞ as T →∞. But since L is finite, this follows

by noting that k1
0 grows linearly in T by (B.3), and for each l = 1, . . . , L, kln →∞

as kl0 →∞ by (B.2). We may thus put κ(T ) = kLn to conclude the proof. �

Now fix a sequence (x1, . . . , xT ) ∈ ΞT for each T ∈ N. Let P T denote the

empirical matrix for (x1, . . . , xT ) as defined in condition (2′). Consider P T (θ, θ′)

for some (θ, θ′) ∈ Θ2 such that P (θ, θ′) > 0. Write

P T (θ, θ′) =
n∏
i=1

P Ti (θi, θ
′
i‖θ−i, θ′{i+1,...,n}),

where θ′{i+1,...,n} = (θ′i+1, . . . , θ
′
n) and we have defined

P Ti (θi, θ
′
i‖θ−i, θ′{i+1,...,n}) =

∑
y∈

∏i−1
j=1 Θj

w(y)P Ti (θi, θ
′
i‖θ−i, (y, θ′{i+1,...,n})),

where (y, θ′{i+1,...,n}) = (y1, . . . , yi−1, θ
′
i+1, . . . , θ

′
n) and the weight w(y) is given by

w(y) =
τi(θ, (y, θ

′
{i+1,...,n}))∑

z∈
∏i−1
j=1 Θj

τi(θ, (z, θ′{i+1,...,n}))
.

Since (x1, . . . , xT ) ∈ ΞT , we have for all y ∈
∏i−1
j=1 Θj ,∣∣∣P Ti (θi, θ

′
i‖θ−i, (y, θ′{i+1,...,n}))− Pi(θi, θ

′
i)
∣∣∣ ≤ cτi(θ,(y,θ′{i+1,...,n}))

,

and thus∣∣∣P Ti (θi, θ
′
i‖θ−i, θ′{i+1,...,n})− Pi(θi, θ

′
i)
∣∣∣ ≤ ∑

y∈
∏i−1
j=1 Θj

w(y)cτi(θ,(y,θ′{i+1,...,n}))
.

Let K =
∑

y∈
∏i−1
j=1 Θj

τi(θ, (y, θ
′
{i+1,...,n})), and note that

K ≥ τi(θ, θ′−i) ≥ τ(θ, θ′) ≥ κ(T ),

where the last inequality is by Lemma B.6 since P (θ, θ′) > 0 by assumption. Thus∑
y∈

∏i−1
j=1 Θj

w(y)cτi(θ,(y,θ′{i+1,...,n}))
≤
∣∣∣ i−1∏
j=1

Θj

∣∣∣ max
1≤j≤K

j

K
cj ≤ |Θ| max

1≤j≤κ(T )

j

κ(T )
cj .

Since κ(T )→∞, Lemma B.4 then implies∣∣∣P Ti (θi, θ
′
i‖θ−i, θ′{i+1,...,n})− Pi(θi, θ

′
i)
∣∣∣ ≤ |Θ| max

1≤j≤κ(T )

j

κ(T )
cj → 0 as T →∞.

Therefore,

P T (θ, θ′)→
∏
i

Pi(θi, θ
′
i) = P (θ, θ′)
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for all (θ, θ′) ∈ Θ2 such that P (θ, θ′) > 0. Furthermore, κ(T ) is independent of the

sequences (x1, . . . , xT ), T ∈ N, by Lemma B.6, and hence convergence is uniform

as desired.

To finish the proof, we observe that

1−
∑

θ′′ /∈suppP (θ,·)

P T (θ, θ′′) =
∑

θ′∈suppP (θ,·)

P T (θ, θ′)→
∑

θ′∈suppP (θ,·)

P (θ, θ′) = 1,

which implies that P T (θ, θ′) → 0 for all (θ, θ′) ∈ Θ2 such that P (θ, θ′) = 0. This

completes the proof of condition (2′) and that of Lemma 5.1.

B.3. Proof of Theorem 5.1. Fix ε > 0 once and for all. We first find the cutoff

discount factor δ̄ < 1 for every T < ∞. To this end, for T < ∞ and δ ∈ [0, 1],

consider the problem

dδ,T = sup
u∈[0,1]nT

∥∥∥ 1

T

T∑
t=1

ut − 1− δ
1− δT

T∑
t=1

δt−1ut
∥∥∥.

The objective function is continuous in (δ, u) on [0, 1]× [0, 1]nT and d1,T = 0. Thus

the Maximum Theorem implies that for all T < ∞, there exists δ̄(T ) < 1 such

that for all δ > δ̄(T ), dδ,T = dδ,T − d1,T ≤ ε
2 .

Let η = ε
4|Θ| . By Lemma 5.1 there exists a test (bk) and a time T̄ < ∞ such

that for all i, ρ−i, λ, and T > T̄ , we have both θti = xti for all t and
∥∥πT − π∥∥ < η

with Pρ∗i ,ρ−i-probability at least 1− η. Therefore, for all v, i, ρ−i, λ, T > T̄ , and

δ > δ̄(T ), player i’s payoff from ρ∗i in the CRM (fv, (bk), T ) satisfies∣∣∣vi − Eρ∗i ,ρ−i [
1− δ

1− δT
T∑
t=1

δtui(f
v(xt), θti)]

∣∣∣ ≤ ∣∣∣vi − Eρ∗i ,ρ−i [
1

T

T∑
t=1

ui(f
v(xt), θti)]

∣∣∣+
ε

2

≤ η + (1− η)
∑
θ∈Θ

∣∣π(θ)− πT (θ)
∣∣+

ε

2

< 2η |Θ|+ ε

2
= ε.

Thus player i can truthfully secure vi − ε as desired.

B.4. Proof of Corollary 5.1. We need two preliminary results. Let v ∈ Rn.

Take p ∈ Rn+ \ {0} such that for all w ∈ V , p · w ≤ p · v. Let κ > 0 and define the

set

Tr(κ, v) = {w ∈ Rn | p · w ≤ p · v, wi ≥ vi − κ i = 1, . . . , n}.

Lemma B.7. Assume that p � 0 and
∑

i pi = 1. Then, for all w ∈ Tr(κ, v),

‖w − v‖ ≤ κmax{ 1
pi
| i = 1, . . . , n}.

Proof. Consider the problem max{‖w − v‖ | w ∈ Tr(κ, v)}. This is a problem

of maximizing a convex function on a convex and compact set. Corollary 32.3.2

in Rockafellar (1970) implies that the maximum is attained at extreme points of
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Tr(κ, v). Now, observe that Tr(κ, v) is a polytope that can be written as the

intersection of n+ 1 linear inequalities

Tr(κ, v) =
n⋂
i=0

{
w ∈ Rn | w · βi ≤ αi

}
,

where β0 = p, α0 = p · v, and for i = 1, . . . , n, βi ∈ Rn is minus the unit vector

having 1 in the i-th component and αi = κ− vi.
The polytope Tr(κ, v) has n + 1 extreme points. To see this, note first that if

one of the n+1 linear inequalities defining Tr(κ, v) does not bind at some extreme

point w, then all the other n linear inequalities must bind for otherwise we could

obtain w as a convex combination of vectors in Tr(κ, v). It then follows that the set

of extreme points of Tr(κ, v) equals {w0, w1, . . . , wn} where w0 = v−κ(1, . . . , 1)T

and for i = 1, . . . , n wii = vi + κ
pi

∑
j 6=i pj and wij = vj − κ for i 6= j. We deduce

that

max{‖w − v‖ | w ∈ Tr(κ, v)} ≤ max{κ, max
i=1,...,n

κ

pi
} ≤ κmax{ 1

pi
| i = 1, . . . , n},

which proves the lemma. �

Lemma B.8. Fix ε̄ > 0. There exists T̄ such that for all T ≥ T̄ there exists δ̄ < 1

such that for all δ > δ̄ and any payoff vector v̄ obtained as

v̄ =
1− δ

1− δT
E[

T∑
t=1

δt−1u(f t(θ1, . . . , θt), θt)]

with decision rules f t : Θt → ∆(A), t = 1, . . . , T , there exists w ∈ V within

distance ε̄ of v̄.

Proof. Given a sequence of types (θ1, . . . , θT ) denote the empirical distribution by

πT ∈ ∆(Θ) and note that there exists T̄ sufficiently large such that

E[
∥∥πT − π∥∥] <

ε̄

2 |Θ|
.

As in the proof of Theorem 5.1, for any T ≥ T̄ we can take δ̄(T ) < 1 big enough

such that for all (ut)Tt=1 ⊂ [0, 1]n and all δ > δ̄(T ),∥∥∥ 1

T

T∑
t=1

ut − 1− δ
1− δT

T∑
t=1

δt−1ut
∥∥∥ < ε̄

2
.

Observe that the set

V (δ, T )

=
{
v ∈ Rn | v =

1− δ
1− δT

E[

T∑
t=1

u(f t(θ1, . . . , θt), θt)] with f t : Θt → ∆(A) all t
}
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is convex and therefore we can find a stationary rule f : Θ→ ∆(A) such that

v̄ =
1− δ

1− δT
E[

T∑
t=1

δt−1u(f(θt), θt)].

Define w = Eπ[u(f(θ), θ)] ∈ V . Then for T ≥ T̄ and δ ≥ δ̄(T ),

‖w − v̄‖ =
∥∥∥Eπ[u(f(θ), θ)]− 1− δ

1− δT
T∑
t=1

E[u(f(θt), θt)]
∥∥∥

≤
∥∥∥Eπ[u(f(θ), θ)]− 1

T

T∑
t=1

E[u(f(θt), θt)]
∥∥∥+

ε̄

2

≤ E[|Θ|
∥∥πT − π∥∥] +

ε̄

2
< ε̄,

proving the lemma. �

Let us now prove the corollary. Fix ε > 0. Let v1, . . . vQ̄ be the set of extreme

points of co(P(V )). Let f q : Θ → A be the rule giving expected payoffs vq. For

each extreme point vq, let pq ∈ Rn++ with
∑n

i=1 p
q
i = 1 and pq · w ≤ pq · vq for all

w ∈ V . Take ε̄ > 0 defined as

ε̄
(

1 + 2 max{ 1

pqi
| q = 1, . . . , Q̄, i = 1, . . . , n}

)
=
ε

2
.

Apply Theorem 5.1 to find a test (bk) and T̄ such that for all T > T̄ there exists

a discount factor δ̄ < 1 such that for all δ > δ̄ and all initial distributions λ, each

player i can secure vqi − ε̄ in the CRM (f q, (bk), T ) for all q = 1, . . . , Q̄.

We additionally restrict T̄ and δ̄ to be large enough so that Lemma B.8 applies

given ε̄. Finally, for any T > T̄ we will take δ̄ big enough such that for all δ > δ̄,

(1− δT ) ≤ ε
2 . In the sequel, (bk), T ≥ T̄ , and δ > δ̄ are fixed.

Let now v ∈ coP(V ) as in the statement of the corollary. Take φv ∈ ∆(AΘ)

giving expected payoffs equal to v and such that there exists a family of rules

f̃1, . . . , f̃Q ∈ AΘ with φv({f̃1, . . . , f̃Q}) = 1. Let vq = Eπ[u(f̃ q(θ), θ)] and note

that v =
∑Q

q=1 φ
v(f̃ q)vq.

Consider the block CRM (φv, (bk), T )∞ and let (ρ, µ) be a sequential equilibrium

of the block CRM. Take any history h of length mT , with m ∈ N, right after the

rule applying during the ensuing T rounds is realized. Let f̃ q be such rule and

denote the expected normalized sum of discounted payoffs over the T -period block

by vδ,mT ∈ V (δ, T ). By construction, vδ,mTi ≥ vqi − ε̄ for all i = 1, . . . , n. From

Lemma B.8, there exists wδ,mT ∈ V such that
∥∥wδ,mT − vδ,mT∥∥ < ε̄. It follows that

for all i = 1, . . . , n, wδ,mTi ≥ vi − 2ε̄ and therefore wδ,mT ∈ Tr(2ε̄, vq). Applying

Lemma B.7, ∥∥∥wδ,mT − v∥∥∥ ≤ 2ε̄max{ 1

pqi
| i = 1, . . . , n}.
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It follows that
∥∥vδ,mT − vq∥∥ ≤ ∥∥vδ,mT − wδ,mT∥∥+

∥∥wδ,mT − vq∥∥ ≤ ε/2. Thus, the

expected payoff vector right before the rule applying during the ensuing T rounds

is realized, denoted v̄δ,T , satisfies
∥∥v̄δ,T − v∥∥ ≤ ε

2 .

Take now an arbitrary history h ∈ (
∏n
i=1H

t
i ) × Ht of realized types, reports,

public randomizations, and actions up to period t ≥ 1 in the block CRM. Write

the discounted sum of continuation payoffs from period t on as

v(h) = (1− δ)Eρ,φv [
∑
t′≥t

δt
′−tu(at

′
, θt
′
) | h],

where the expectation is taken conditional on h, given the strategy profile ρ and

the randomized rule φv. Let m∗ = arg min{mT | mT ≥ t} and rewrite the sum

above as

v(h) = Eρ,φv [
m∗T∑
t′=t

δt
′−t(1− δ)u(at

′
, θt
′
) | h]

+ Eρ,φv [δm
∗T−t(1− δT )

∑
m≥m∗

δ(m−m∗)T v̄δ,mT | h].

The corollary now follows by observing that

‖v(h)− v‖ ≤ (1− δm∗T−t) ‖v‖+ δm
∗T−t ε

2
≤ (1− δT ) ‖v‖+

ε

2
≤ ε.

Appendix C. A Proof for Section 6

Proof of Lemma 6.1. The first part is immediate, given the construction of the

block CRM (φi, (bk), T ).

To see the second part, fix a player i and the initial state θ1
i = θi. Let

P (t)(θi, θ
′
i) = P[θti = θ′i | θ1

i = θi]. From Theorem 1.8.4 in Norris (1997), there

exists a partition (Cir)
di
r=1 of Θi such that P

(n)
i (θi, θ

′
i) > 0 only if θi ∈ Cir and

θ′i ∈ Cir+n for some r ∈ {1, . . . , di}, where we write Ci
ndi+r

= Cir. Observe that,

without loss, we can assume that the initial state is such that θi ∈ Ci1.

From Theorem 1.8.5 in Norris (1997), there exists N = N(θi) ∈ N such that for

all n ≥ N and all θ′i ∈ Cir,
∣∣P (ndi+r)(θi, θ

′
i) − diπi(θ′i)

∣∣ ≤ ε
4|Θi| . Note that for any

such n ≥ N ,

∣∣∣ di∑
r=1

∑
θ′i∈Θi

max
ai

ui(ai, a
i
−i, θ

′
i)(P

(ndi+r)(θi, θ
′
i)− πi(θ′i))

∣∣∣
=
∣∣∣ di∑
r=1

∑
θ′i∈Cir

max
ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θi, θ

′
i)− diπi(θ′i)

)∣∣∣
≤

di∑
r=1

∑
θ′i∈Cir

ε

4 |Θi|
≤ ε

4
.
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Now, note that for any δ and any L ≥ (N + 1)di + 1,

∣∣∣ 1− δ
1− δL

L∑
t=1

δt−1E[max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θi]− vi

∣∣∣
≤ 1− δNdi

1− δL
2 +

∣∣∣ 1− δ
1− δL

L∑
t=Ndi+1

δt−1
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (t)(θ′i)− πi(θ′i)

)∣∣∣.
To bound the second term, take L̄ = max{ndi | ndi ≤ L} (≥ Ndi + 1) and note

that∣∣∣ L̄∑
t=Ndi+1

δt−1
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (t)(θ′i)− πi(θ′i)

)∣∣∣
≤

L̄/di−1∑
n=N

δnd
i−1
∣∣∣ di∑
r=1

δr
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θ′i)− πi(θ′i)

)∣∣∣
≤

L̄/di−1∑
n=N

δnd
i−1
{∣∣∣ di∑

r=1

(1− δr)
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θ′i)− πi(θ′i)

)∣∣∣
+
∣∣∣ di∑
r=1

∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θ′i)− πi(θ′i)

)∣∣∣}

≤
L̄/di−1∑
n=N

δnd
i−1
{

(1− δdi)2di |Θi|+
ε

4

}
=
δd
iN−1 − δL̄−1

1− δdi
{

(1− δdi)2di |Θi|+
ε

4

}
,

and thus

∣∣∣ 1− δ
1− δL

L̄∑
t=Ndi+1

δt−1
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (t)(θ′i)− πi(θ′i)

)∣∣∣
≤ 1− δ

1− δdi
δd
iN−1 − δL̄−1

1− δL
{

(1− δdi)2di |Θi|+
ε

4

}
≤
{

(1− δdi)2di |Θi|+
ε

8

}
≤ ε

2
,

if δ is big enough (uniformly in L). Let δ(i) ∈]0, 1[ be such that the last inequality

holds for all δ ≥ δ(i).
Now, let δθi be such that for all δ ≥ δθi , L(δ) ≥ (N(θi) + 1)di + 1 and

1− δNdi

1− δL(δ)
2 +

1− δ
1− δL(δ)

2di <
ε

2
.
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Defining δi,θi = max{δθi , δ(i)}, it then follows that for all δ ≥ δi,θi ,∣∣∣ 1− δ
1− δL(δ)

L(δ)∑
t=1

δt−1E[max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θi]− vi

∣∣∣ < ε.

Finally, taking δ1 = max{δ0,max{δi,θi | i = 1, . . . , n, θi ∈ Θi}} gives the result. �

Appendix D. Formal description of strategies and beliefs

In this appendix we present a formal description of the equilibrium strategies

and beliefs in terms of an automaton.

It will be useful to introduce some notation to describe how actions are im-

plemented in each block CRM (φi, (bk), T )∞. For an arbitrary sequence y =

(y1, . . . , yt), let y≥n be the sequence (yn, . . . , yt). Let T̄ (t) = max{nT + 1 | n ≥
0, nT + 1 ≤ t}. Given (m1, ω1, . . . ,mt, ωt), the block CRM implements the action

at = φi(χt−T̄ (t)+1
(
(m1, ω1, . . . ,mt, ωt)≥T̄ (t)

)
, ωT̄ (t)) ∈ A,

where χ was defined in Remark 5.1.

Let H(0) ⊂ H denote the set of feasible public histories in the block CRM

(φ0, (bk), T )∞, the restriction being the requirement that actions be the ones the

mechanisms would implement. For i = 1, . . . , n, let H(i) ⊂ H denote the set

of feasible public histories in the punishment mechanism (L, (φi, (bk), T )∞). The

histories in H(i) consist of stick-subphase histories (periods t = 1, . . . , L) and

carrot-subphase histories (periods t ≥ L+1). For the stick-subphase histories, the

restriction is that the action played by each player j 6= i coincide with aij for t =

1, . . . , L. Denote by H(i, s) the set of all such histories. Feasible carrot-subphase

histories are such that their first L periods coincide with an element of H(i, s),

and for t > L the actions are the ones the mechanism would implement. Denote

by H(i, c) the set of all such histories. By definition, H(i) = H(i, s) ∪ H(i, c).

Note that the null history ∅ is an element of each of the sets H(0), . . . ,H(n).

Take h ∈ H(i), for some i = 0, 1, . . . , n, and (m,ω, a) ∈ Θ× [0, 1]×A such that

(h, (m,ω, a)) /∈ H(i). Then, by construction, there exists some j whose action aj

does not match the action the corresponding mechanism would have implemented

given the history.

Our construction of the automaton distinguishes between two different stages

r ∈ {0, 1} within each period t ≥ 1. The idea is that r = 0 corresponds to the

reporting stage (i.e., t.2), and r = 1 to the action stage (i.e., t.4). Thus, the index

used to describe the evolution of the automaton is the pair (t, r) endowed with

the lexicographic order (t, 0) < (t, 1) < (t+ 1, 0).
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Let S = H(0) ∪H(1) ∪ · · · ∪H(n), and define

B =
⋃
t≥1

( n∏
i=1

∆(Θt
i)
)
.

The state space of the automaton is the product

{0, 1, . . . , n} × S ×B ×B,

and we write (ι, s, B̄, B) for a generic element. The first component ι indicates

the mechanism players are mimicking, while s indicates the current history in

the mechanism. The third component B̄ indicates the (public) beliefs the players

entertained about the private histories of types when the mechanism ι was trig-

gered. The fourth component B indicates the players’ current beliefs about the

whole history of private types. For any s ∈ Ht, let T(s) = t.

Before describing the evolution of the automaton, we choose equilibria for the

mechanisms as follows: Let (ρ0,λ, µ0,λ) be a PBE assesment for (φ0, (bk), T )∞

given initial beliefs λ. For all i = 1, . . . , n, all beliefs B ∈ B such that B ∈∏n
i=1 ∆(Θt

i), and all punishment mechanisms (L, (φi, (bk), T )∞), take a PBE as-

sessment (ρi,B, µi,B) such that the strategy ρi,B depends on B only through the

marginal distribution of the period-t profile θt. For completeness, we extend the

belief system µi,B so that, for each k ≥ 0, and each public history h̃ ∈ H(i) of the

form (mt, ωt, at, . . . ,mt+k, ωt+k, at+k) or

(mt, ωt, at, . . . ,mt+k, ωt+k, at+k,mt+k+1, ωt+k+1),

it gives a distribution over the entire private histories up to period t + k + 1,

denoted

µi,B
(
(θ1, . . . , θt, θt+1, . . . , θt+k+1) | h̃

)
.

This extended belief system is computed using Bayes rule given the prior B ∈∏n
i=1 ∆(Θt

i) and is assumed to satisfy the requirements imposed on PBE beliefs.

The automaton evolves as follows: Let ι1,0 = 0, s1,0 = ∅, B̄1,0 = B1,0 =

λ. For any t ≥ 1, define (ιt,1, st,1, B̄t,1, Bt,1) as follows. Let ιt,1 = ιt,0, st,1 =

(st,0, (mt, ωt)), B̄t,1 = B̄t,0 and

Bt,1(θ1, . . . , θt) = µι
t,1,B̄t,1

(
(θ1, . . . , θt) | st,1

)
.

For t ≥ 2, define (ιt,0, st,0, B̄t,0, Bt,0) as follows. Let

Bt,0(θ1, . . . , θt) = µι
t−1,1,B̄t−1,1(

(θ1, . . . , θt) | st−1,1
)
.

If (st−1,1, at−1) ∈ H(ιt−1,1), then ιt,0 = ιt−1,1, st,0 = (st−1,1, at−1), B̄t,0 = B̄t−1,1.

If (st−1,1, at−1) /∈ H(ιt−1,1), then take any j whose action at−1
j differed from what

the mechanism mandated and define ιt,0 = j, B̄t,0 = Bt,0 and st,0 = ∅.
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The assessment (σ, µ) is constructed as follows. Fix a player i, a private history

hti = (θ1
i , . . . , θ

t
i) ∈ Θt

i and a public history ht ∈ Ht. If ht ∈ (Θ× [0, 1]×A)t−1, let

σi(· | ht, hti) = ρι
t,B̄t

i

(
· | st,0, (θt−T(st,0)

i , . . . , θti)
)
.

If ht ∈ (Θ× [0, 1]×A)t−1 ×Θ× [0, 1], let

σi(· | ht, hti) =



aι
t,1

i if ιt,1 6= 0, i 6= ιt,1

and T(st,1) ≤ L− 1,

ρι
t,1,B̄t,1

i

(
· | st,1, (θt−T(st,1)

i , . . . , θti)
)

if ιt,1 = i

and T(st,1) ≤ L− 1,

φi(χl−T̄ (l)+1
(
(m̃1, ω̃1, . . . , m̃l, ω̃l)≥T̄ (l)

)
, ω̃T̄ (l)) otherwise,

where (m̃1, ω̃1, . . . , m̃l, ω̃l) =
((
st,1
)
≥min{ιt,1}L+1

)
\A is the history of reports and

public randomizations in the current mechanism, excluding those occuring during

the stick subphase if ιt 6= 0. (Here, for any vector x having some components in

A, x \A denotes all the components of x that are not in A.)

Public beliefs about player i are as follows. For any ht ∈ (Θ× [0, 1]×A)t−1, let

µti
(
(θ1
i , . . . , θ

t
i) | ht

)
= Bt,0

i (θ1
i , . . . , θ

t
i),

and for any ht ∈ (Θ× [0, 1]×A)t−1 ×Θ× [0, 1], let

µti
(
(θ1
i , . . . , θ

t
i) | ht

)
= Bt,1

i (θ1
i , . . . , θ

t
i).

Note that unless a deviation causes ι to change, play mimics some fixed se-

quential equilibrium (ρi,B, µi,B), i = 0, 1, . . . , n, B ∈ B. Thus to show that the

strategies are sequentially rational, it suffices to show that any one-stage devia-

tions that triggers a change in ι is unprofitable. By inspection of the automaton,

such deviations consist of one-stage deviations in actions at the following three

classes of states:

(1) ιt,1 = 0;

(2) ιt,1 = i 6= 0, T (st,1) ≤ L− 1;

(3) ιt,1 = i 6= 0, T (st,1) ≥ L.

These are informally described in Section 6.2 as cooperative-phase, stick-subphase,

and carrot-subphase histories. Sequential rationality follows by the analysis there.
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