← volver

Miércoles 16/10/2019

Depto. de Ingeniería Industrial – Sala de Consejo – Beauchef 851, piso 4, sala 401 – 13:00 horas


“Testing models of social learning on networks: evidence from two experiments», a cargo de Juan Pablo Xandri, Princeton University.


We theoretically and empirically study an incomplete information model of social learning. Agents initially guess the binary state of the world after observing a private signal. In subsequent rounds, agents observe their network neighbors’ previous guesses before guessing again. Agents are drawn from a mixture of learning types—Bayesian, who face incomplete information about others’ types, and DeGroot, who average their neighbors’ previous period guesses and follow the majority. We study (1) learning features of both types of agents in our incomplete information model; (2) what network structures lead to failures of asymptotic learning; (3) whether realistic networks exhibit such structures. We conducted lab experiments with 665 subjects in Indian villages and 350 students from ITAM in Mexico. We perform a reducedform analysis and then structurally estimate the mixing parameter, finding the share of Bayesian agents to be 10% and 50% in the Indian-villager and Mexican-student samples, respectively.

Arun G. Chandrasekhar, Horacio Larreguy and Juan Pablo Xandri.




El seminario se realizará el MIERCOLES 16 DE OCTUBRE a las 13:00hrs., en la SALA CONSEJO (401) de BEAUCHEF 851, PISO 4, Depto. de Ingeniería Industrial.


Más información se encuentra disponible en nuestra página web: http://mipp.cl/es/events_category/seminario/